Step |
Hyp |
Ref |
Expression |
1 |
|
signsw.p |
⊢ ⨣ = ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } ↦ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) ) |
2 |
|
c0ex |
⊢ 0 ∈ V |
3 |
2
|
tpid2 |
⊢ 0 ∈ { - 1 , 0 , 1 } |
4 |
1
|
signspval |
⊢ ( ( 0 ∈ { - 1 , 0 , 1 } ∧ 𝑢 ∈ { - 1 , 0 , 1 } ) → ( 0 ⨣ 𝑢 ) = if ( 𝑢 = 0 , 0 , 𝑢 ) ) |
5 |
3 4
|
mpan |
⊢ ( 𝑢 ∈ { - 1 , 0 , 1 } → ( 0 ⨣ 𝑢 ) = if ( 𝑢 = 0 , 0 , 𝑢 ) ) |
6 |
|
iftrue |
⊢ ( 𝑢 = 0 → if ( 𝑢 = 0 , 0 , 𝑢 ) = 0 ) |
7 |
|
id |
⊢ ( 𝑢 = 0 → 𝑢 = 0 ) |
8 |
6 7
|
eqtr4d |
⊢ ( 𝑢 = 0 → if ( 𝑢 = 0 , 0 , 𝑢 ) = 𝑢 ) |
9 |
|
iffalse |
⊢ ( ¬ 𝑢 = 0 → if ( 𝑢 = 0 , 0 , 𝑢 ) = 𝑢 ) |
10 |
8 9
|
pm2.61i |
⊢ if ( 𝑢 = 0 , 0 , 𝑢 ) = 𝑢 |
11 |
5 10
|
eqtrdi |
⊢ ( 𝑢 ∈ { - 1 , 0 , 1 } → ( 0 ⨣ 𝑢 ) = 𝑢 ) |
12 |
1
|
signspval |
⊢ ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 0 ∈ { - 1 , 0 , 1 } ) → ( 𝑢 ⨣ 0 ) = if ( 0 = 0 , 𝑢 , 0 ) ) |
13 |
3 12
|
mpan2 |
⊢ ( 𝑢 ∈ { - 1 , 0 , 1 } → ( 𝑢 ⨣ 0 ) = if ( 0 = 0 , 𝑢 , 0 ) ) |
14 |
|
eqid |
⊢ 0 = 0 |
15 |
14
|
iftruei |
⊢ if ( 0 = 0 , 𝑢 , 0 ) = 𝑢 |
16 |
13 15
|
eqtrdi |
⊢ ( 𝑢 ∈ { - 1 , 0 , 1 } → ( 𝑢 ⨣ 0 ) = 𝑢 ) |
17 |
11 16
|
jca |
⊢ ( 𝑢 ∈ { - 1 , 0 , 1 } → ( ( 0 ⨣ 𝑢 ) = 𝑢 ∧ ( 𝑢 ⨣ 0 ) = 𝑢 ) ) |
18 |
17
|
rgen |
⊢ ∀ 𝑢 ∈ { - 1 , 0 , 1 } ( ( 0 ⨣ 𝑢 ) = 𝑢 ∧ ( 𝑢 ⨣ 0 ) = 𝑢 ) |