Metamath Proof Explorer


Theorem signsw0glem

Description: Neutral element property of .+^ . (Contributed by Thierry Arnoux, 9-Sep-2018)

Ref Expression
Hypothesis signsw.p = ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } ↦ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) )
Assertion signsw0glem 𝑢 ∈ { - 1 , 0 , 1 } ( ( 0 𝑢 ) = 𝑢 ∧ ( 𝑢 0 ) = 𝑢 )

Proof

Step Hyp Ref Expression
1 signsw.p = ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } ↦ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) )
2 c0ex 0 ∈ V
3 2 tpid2 0 ∈ { - 1 , 0 , 1 }
4 1 signspval ( ( 0 ∈ { - 1 , 0 , 1 } ∧ 𝑢 ∈ { - 1 , 0 , 1 } ) → ( 0 𝑢 ) = if ( 𝑢 = 0 , 0 , 𝑢 ) )
5 3 4 mpan ( 𝑢 ∈ { - 1 , 0 , 1 } → ( 0 𝑢 ) = if ( 𝑢 = 0 , 0 , 𝑢 ) )
6 iftrue ( 𝑢 = 0 → if ( 𝑢 = 0 , 0 , 𝑢 ) = 0 )
7 id ( 𝑢 = 0 → 𝑢 = 0 )
8 6 7 eqtr4d ( 𝑢 = 0 → if ( 𝑢 = 0 , 0 , 𝑢 ) = 𝑢 )
9 iffalse ( ¬ 𝑢 = 0 → if ( 𝑢 = 0 , 0 , 𝑢 ) = 𝑢 )
10 8 9 pm2.61i if ( 𝑢 = 0 , 0 , 𝑢 ) = 𝑢
11 5 10 eqtrdi ( 𝑢 ∈ { - 1 , 0 , 1 } → ( 0 𝑢 ) = 𝑢 )
12 1 signspval ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 0 ∈ { - 1 , 0 , 1 } ) → ( 𝑢 0 ) = if ( 0 = 0 , 𝑢 , 0 ) )
13 3 12 mpan2 ( 𝑢 ∈ { - 1 , 0 , 1 } → ( 𝑢 0 ) = if ( 0 = 0 , 𝑢 , 0 ) )
14 eqid 0 = 0
15 14 iftruei if ( 0 = 0 , 𝑢 , 0 ) = 𝑢
16 13 15 eqtrdi ( 𝑢 ∈ { - 1 , 0 , 1 } → ( 𝑢 0 ) = 𝑢 )
17 11 16 jca ( 𝑢 ∈ { - 1 , 0 , 1 } → ( ( 0 𝑢 ) = 𝑢 ∧ ( 𝑢 0 ) = 𝑢 ) )
18 17 rgen 𝑢 ∈ { - 1 , 0 , 1 } ( ( 0 𝑢 ) = 𝑢 ∧ ( 𝑢 0 ) = 𝑢 )