| Step | Hyp | Ref | Expression | 
						
							| 1 |  | signsw.p | ⊢  ⨣   =  ( 𝑎  ∈  { - 1 ,  0 ,  1 } ,  𝑏  ∈  { - 1 ,  0 ,  1 }  ↦  if ( 𝑏  =  0 ,  𝑎 ,  𝑏 ) ) | 
						
							| 2 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 3 | 2 | tpid2 | ⊢ 0  ∈  { - 1 ,  0 ,  1 } | 
						
							| 4 | 1 | signspval | ⊢ ( ( 0  ∈  { - 1 ,  0 ,  1 }  ∧  𝑢  ∈  { - 1 ,  0 ,  1 } )  →  ( 0  ⨣  𝑢 )  =  if ( 𝑢  =  0 ,  0 ,  𝑢 ) ) | 
						
							| 5 | 3 4 | mpan | ⊢ ( 𝑢  ∈  { - 1 ,  0 ,  1 }  →  ( 0  ⨣  𝑢 )  =  if ( 𝑢  =  0 ,  0 ,  𝑢 ) ) | 
						
							| 6 |  | iftrue | ⊢ ( 𝑢  =  0  →  if ( 𝑢  =  0 ,  0 ,  𝑢 )  =  0 ) | 
						
							| 7 |  | id | ⊢ ( 𝑢  =  0  →  𝑢  =  0 ) | 
						
							| 8 | 6 7 | eqtr4d | ⊢ ( 𝑢  =  0  →  if ( 𝑢  =  0 ,  0 ,  𝑢 )  =  𝑢 ) | 
						
							| 9 |  | iffalse | ⊢ ( ¬  𝑢  =  0  →  if ( 𝑢  =  0 ,  0 ,  𝑢 )  =  𝑢 ) | 
						
							| 10 | 8 9 | pm2.61i | ⊢ if ( 𝑢  =  0 ,  0 ,  𝑢 )  =  𝑢 | 
						
							| 11 | 5 10 | eqtrdi | ⊢ ( 𝑢  ∈  { - 1 ,  0 ,  1 }  →  ( 0  ⨣  𝑢 )  =  𝑢 ) | 
						
							| 12 | 1 | signspval | ⊢ ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  0  ∈  { - 1 ,  0 ,  1 } )  →  ( 𝑢  ⨣  0 )  =  if ( 0  =  0 ,  𝑢 ,  0 ) ) | 
						
							| 13 | 3 12 | mpan2 | ⊢ ( 𝑢  ∈  { - 1 ,  0 ,  1 }  →  ( 𝑢  ⨣  0 )  =  if ( 0  =  0 ,  𝑢 ,  0 ) ) | 
						
							| 14 |  | eqid | ⊢ 0  =  0 | 
						
							| 15 | 14 | iftruei | ⊢ if ( 0  =  0 ,  𝑢 ,  0 )  =  𝑢 | 
						
							| 16 | 13 15 | eqtrdi | ⊢ ( 𝑢  ∈  { - 1 ,  0 ,  1 }  →  ( 𝑢  ⨣  0 )  =  𝑢 ) | 
						
							| 17 | 11 16 | jca | ⊢ ( 𝑢  ∈  { - 1 ,  0 ,  1 }  →  ( ( 0  ⨣  𝑢 )  =  𝑢  ∧  ( 𝑢  ⨣  0 )  =  𝑢 ) ) | 
						
							| 18 | 17 | rgen | ⊢ ∀ 𝑢  ∈  { - 1 ,  0 ,  1 } ( ( 0  ⨣  𝑢 )  =  𝑢  ∧  ( 𝑢  ⨣  0 )  =  𝑢 ) |