Metamath Proof Explorer


Theorem signsw0glem

Description: Neutral element property of .+^ . (Contributed by Thierry Arnoux, 9-Sep-2018)

Ref Expression
Hypothesis signsw.p
|- .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) )
Assertion signsw0glem
|- A. u e. { -u 1 , 0 , 1 } ( ( 0 .+^ u ) = u /\ ( u .+^ 0 ) = u )

Proof

Step Hyp Ref Expression
1 signsw.p
 |-  .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) )
2 c0ex
 |-  0 e. _V
3 2 tpid2
 |-  0 e. { -u 1 , 0 , 1 }
4 1 signspval
 |-  ( ( 0 e. { -u 1 , 0 , 1 } /\ u e. { -u 1 , 0 , 1 } ) -> ( 0 .+^ u ) = if ( u = 0 , 0 , u ) )
5 3 4 mpan
 |-  ( u e. { -u 1 , 0 , 1 } -> ( 0 .+^ u ) = if ( u = 0 , 0 , u ) )
6 iftrue
 |-  ( u = 0 -> if ( u = 0 , 0 , u ) = 0 )
7 id
 |-  ( u = 0 -> u = 0 )
8 6 7 eqtr4d
 |-  ( u = 0 -> if ( u = 0 , 0 , u ) = u )
9 iffalse
 |-  ( -. u = 0 -> if ( u = 0 , 0 , u ) = u )
10 8 9 pm2.61i
 |-  if ( u = 0 , 0 , u ) = u
11 5 10 eqtrdi
 |-  ( u e. { -u 1 , 0 , 1 } -> ( 0 .+^ u ) = u )
12 1 signspval
 |-  ( ( u e. { -u 1 , 0 , 1 } /\ 0 e. { -u 1 , 0 , 1 } ) -> ( u .+^ 0 ) = if ( 0 = 0 , u , 0 ) )
13 3 12 mpan2
 |-  ( u e. { -u 1 , 0 , 1 } -> ( u .+^ 0 ) = if ( 0 = 0 , u , 0 ) )
14 eqid
 |-  0 = 0
15 14 iftruei
 |-  if ( 0 = 0 , u , 0 ) = u
16 13 15 eqtrdi
 |-  ( u e. { -u 1 , 0 , 1 } -> ( u .+^ 0 ) = u )
17 11 16 jca
 |-  ( u e. { -u 1 , 0 , 1 } -> ( ( 0 .+^ u ) = u /\ ( u .+^ 0 ) = u ) )
18 17 rgen
 |-  A. u e. { -u 1 , 0 , 1 } ( ( 0 .+^ u ) = u /\ ( u .+^ 0 ) = u )