Metamath Proof Explorer


Theorem signsw0glem

Description: Neutral element property of .+^ . (Contributed by Thierry Arnoux, 9-Sep-2018)

Ref Expression
Hypothesis signsw.p ˙=a101,b101ifb=0ab
Assertion signsw0glem u1010˙u=uu˙0=u

Proof

Step Hyp Ref Expression
1 signsw.p ˙=a101,b101ifb=0ab
2 c0ex 0V
3 2 tpid2 0101
4 1 signspval 0101u1010˙u=ifu=00u
5 3 4 mpan u1010˙u=ifu=00u
6 iftrue u=0ifu=00u=0
7 id u=0u=0
8 6 7 eqtr4d u=0ifu=00u=u
9 iffalse ¬u=0ifu=00u=u
10 8 9 pm2.61i ifu=00u=u
11 5 10 eqtrdi u1010˙u=u
12 1 signspval u1010101u˙0=if0=0u0
13 3 12 mpan2 u101u˙0=if0=0u0
14 eqid 0=0
15 14 iftruei if0=0u0=u
16 13 15 eqtrdi u101u˙0=u
17 11 16 jca u1010˙u=uu˙0=u
18 17 rgen u1010˙u=uu˙0=u