Metamath Proof Explorer


Theorem signsw0glem

Description: Neutral element property of .+^ . (Contributed by Thierry Arnoux, 9-Sep-2018)

Ref Expression
Hypothesis signsw.p ˙ = a 1 0 1 , b 1 0 1 if b = 0 a b
Assertion signsw0glem u 1 0 1 0 ˙ u = u u ˙ 0 = u

Proof

Step Hyp Ref Expression
1 signsw.p ˙ = a 1 0 1 , b 1 0 1 if b = 0 a b
2 c0ex 0 V
3 2 tpid2 0 1 0 1
4 1 signspval 0 1 0 1 u 1 0 1 0 ˙ u = if u = 0 0 u
5 3 4 mpan u 1 0 1 0 ˙ u = if u = 0 0 u
6 iftrue u = 0 if u = 0 0 u = 0
7 id u = 0 u = 0
8 6 7 eqtr4d u = 0 if u = 0 0 u = u
9 iffalse ¬ u = 0 if u = 0 0 u = u
10 8 9 pm2.61i if u = 0 0 u = u
11 5 10 eqtrdi u 1 0 1 0 ˙ u = u
12 1 signspval u 1 0 1 0 1 0 1 u ˙ 0 = if 0 = 0 u 0
13 3 12 mpan2 u 1 0 1 u ˙ 0 = if 0 = 0 u 0
14 eqid 0 = 0
15 14 iftruei if 0 = 0 u 0 = u
16 13 15 eqtrdi u 1 0 1 u ˙ 0 = u
17 11 16 jca u 1 0 1 0 ˙ u = u u ˙ 0 = u
18 17 rgen u 1 0 1 0 ˙ u = u u ˙ 0 = u