| Step | Hyp | Ref | Expression | 
						
							| 1 |  | signsw.p |  |-  .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) ) | 
						
							| 2 |  | signsw.w |  |-  W = { <. ( Base ` ndx ) , { -u 1 , 0 , 1 } >. , <. ( +g ` ndx ) , .+^ >. } | 
						
							| 3 | 1 | signspval |  |-  ( ( X e. { -u 1 , 0 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) -> ( X .+^ Y ) = if ( Y = 0 , X , Y ) ) | 
						
							| 4 | 3 | adantr |  |-  ( ( ( X e. { -u 1 , 0 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ X =/= 0 ) -> ( X .+^ Y ) = if ( Y = 0 , X , Y ) ) | 
						
							| 5 |  | neeq1 |  |-  ( X = if ( Y = 0 , X , Y ) -> ( X =/= 0 <-> if ( Y = 0 , X , Y ) =/= 0 ) ) | 
						
							| 6 |  | neeq1 |  |-  ( Y = if ( Y = 0 , X , Y ) -> ( Y =/= 0 <-> if ( Y = 0 , X , Y ) =/= 0 ) ) | 
						
							| 7 |  | simplr |  |-  ( ( ( ( X e. { -u 1 , 0 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ X =/= 0 ) /\ Y = 0 ) -> X =/= 0 ) | 
						
							| 8 |  | simpr |  |-  ( ( ( ( X e. { -u 1 , 0 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ X =/= 0 ) /\ -. Y = 0 ) -> -. Y = 0 ) | 
						
							| 9 | 8 | neqned |  |-  ( ( ( ( X e. { -u 1 , 0 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ X =/= 0 ) /\ -. Y = 0 ) -> Y =/= 0 ) | 
						
							| 10 | 5 6 7 9 | ifbothda |  |-  ( ( ( X e. { -u 1 , 0 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ X =/= 0 ) -> if ( Y = 0 , X , Y ) =/= 0 ) | 
						
							| 11 | 4 10 | eqnetrd |  |-  ( ( ( X e. { -u 1 , 0 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ X =/= 0 ) -> ( X .+^ Y ) =/= 0 ) |