Step |
Hyp |
Ref |
Expression |
1 |
|
signsw.p |
|- .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) ) |
2 |
|
signsw.w |
|- W = { <. ( Base ` ndx ) , { -u 1 , 0 , 1 } >. , <. ( +g ` ndx ) , .+^ >. } |
3 |
1
|
signspval |
|- ( ( X e. { -u 1 , 0 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) -> ( X .+^ Y ) = if ( Y = 0 , X , Y ) ) |
4 |
3
|
adantr |
|- ( ( ( X e. { -u 1 , 0 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ X =/= 0 ) -> ( X .+^ Y ) = if ( Y = 0 , X , Y ) ) |
5 |
|
neeq1 |
|- ( X = if ( Y = 0 , X , Y ) -> ( X =/= 0 <-> if ( Y = 0 , X , Y ) =/= 0 ) ) |
6 |
|
neeq1 |
|- ( Y = if ( Y = 0 , X , Y ) -> ( Y =/= 0 <-> if ( Y = 0 , X , Y ) =/= 0 ) ) |
7 |
|
simplr |
|- ( ( ( ( X e. { -u 1 , 0 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ X =/= 0 ) /\ Y = 0 ) -> X =/= 0 ) |
8 |
|
simpr |
|- ( ( ( ( X e. { -u 1 , 0 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ X =/= 0 ) /\ -. Y = 0 ) -> -. Y = 0 ) |
9 |
8
|
neqned |
|- ( ( ( ( X e. { -u 1 , 0 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ X =/= 0 ) /\ -. Y = 0 ) -> Y =/= 0 ) |
10 |
5 6 7 9
|
ifbothda |
|- ( ( ( X e. { -u 1 , 0 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ X =/= 0 ) -> if ( Y = 0 , X , Y ) =/= 0 ) |
11 |
4 10
|
eqnetrd |
|- ( ( ( X e. { -u 1 , 0 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ X =/= 0 ) -> ( X .+^ Y ) =/= 0 ) |