| Step |
Hyp |
Ref |
Expression |
| 1 |
|
signsw.p |
|- .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) ) |
| 2 |
|
signsw.w |
|- W = { <. ( Base ` ndx ) , { -u 1 , 0 , 1 } >. , <. ( +g ` ndx ) , .+^ >. } |
| 3 |
|
df-pr |
|- { -u 1 , 1 } = ( { -u 1 } u. { 1 } ) |
| 4 |
|
snsstp1 |
|- { -u 1 } C_ { -u 1 , 0 , 1 } |
| 5 |
|
snsstp3 |
|- { 1 } C_ { -u 1 , 0 , 1 } |
| 6 |
4 5
|
unssi |
|- ( { -u 1 } u. { 1 } ) C_ { -u 1 , 0 , 1 } |
| 7 |
3 6
|
eqsstri |
|- { -u 1 , 1 } C_ { -u 1 , 0 , 1 } |
| 8 |
7
|
sseli |
|- ( X e. { -u 1 , 1 } -> X e. { -u 1 , 0 , 1 } ) |
| 9 |
1
|
signspval |
|- ( ( X e. { -u 1 , 0 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) -> ( X .+^ Y ) = if ( Y = 0 , X , Y ) ) |
| 10 |
8 9
|
sylan |
|- ( ( X e. { -u 1 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) -> ( X .+^ Y ) = if ( Y = 0 , X , Y ) ) |
| 11 |
10
|
neeq1d |
|- ( ( X e. { -u 1 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) -> ( ( X .+^ Y ) =/= X <-> if ( Y = 0 , X , Y ) =/= X ) ) |
| 12 |
|
neeq1 |
|- ( X = if ( Y = 0 , X , Y ) -> ( X =/= X <-> if ( Y = 0 , X , Y ) =/= X ) ) |
| 13 |
12
|
bibi1d |
|- ( X = if ( Y = 0 , X , Y ) -> ( ( X =/= X <-> ( X x. Y ) < 0 ) <-> ( if ( Y = 0 , X , Y ) =/= X <-> ( X x. Y ) < 0 ) ) ) |
| 14 |
|
neeq1 |
|- ( Y = if ( Y = 0 , X , Y ) -> ( Y =/= X <-> if ( Y = 0 , X , Y ) =/= X ) ) |
| 15 |
14
|
bibi1d |
|- ( Y = if ( Y = 0 , X , Y ) -> ( ( Y =/= X <-> ( X x. Y ) < 0 ) <-> ( if ( Y = 0 , X , Y ) =/= X <-> ( X x. Y ) < 0 ) ) ) |
| 16 |
|
neirr |
|- -. X =/= X |
| 17 |
16
|
a1i |
|- ( ( ( X e. { -u 1 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ Y = 0 ) -> -. X =/= X ) |
| 18 |
|
0re |
|- 0 e. RR |
| 19 |
18
|
ltnri |
|- -. 0 < 0 |
| 20 |
|
simpr |
|- ( ( ( X e. { -u 1 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ Y = 0 ) -> Y = 0 ) |
| 21 |
20
|
oveq2d |
|- ( ( ( X e. { -u 1 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ Y = 0 ) -> ( X x. Y ) = ( X x. 0 ) ) |
| 22 |
|
neg1cn |
|- -u 1 e. CC |
| 23 |
|
ax-1cn |
|- 1 e. CC |
| 24 |
|
prssi |
|- ( ( -u 1 e. CC /\ 1 e. CC ) -> { -u 1 , 1 } C_ CC ) |
| 25 |
22 23 24
|
mp2an |
|- { -u 1 , 1 } C_ CC |
| 26 |
|
simpll |
|- ( ( ( X e. { -u 1 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ Y = 0 ) -> X e. { -u 1 , 1 } ) |
| 27 |
25 26
|
sselid |
|- ( ( ( X e. { -u 1 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ Y = 0 ) -> X e. CC ) |
| 28 |
27
|
mul01d |
|- ( ( ( X e. { -u 1 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ Y = 0 ) -> ( X x. 0 ) = 0 ) |
| 29 |
21 28
|
eqtrd |
|- ( ( ( X e. { -u 1 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ Y = 0 ) -> ( X x. Y ) = 0 ) |
| 30 |
29
|
breq1d |
|- ( ( ( X e. { -u 1 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ Y = 0 ) -> ( ( X x. Y ) < 0 <-> 0 < 0 ) ) |
| 31 |
19 30
|
mtbiri |
|- ( ( ( X e. { -u 1 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ Y = 0 ) -> -. ( X x. Y ) < 0 ) |
| 32 |
17 31
|
2falsed |
|- ( ( ( X e. { -u 1 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ Y = 0 ) -> ( X =/= X <-> ( X x. Y ) < 0 ) ) |
| 33 |
|
simplr |
|- ( ( ( X e. { -u 1 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ -. Y = 0 ) -> Y e. { -u 1 , 0 , 1 } ) |
| 34 |
|
tpcomb |
|- { -u 1 , 0 , 1 } = { -u 1 , 1 , 0 } |
| 35 |
33 34
|
eleqtrdi |
|- ( ( ( X e. { -u 1 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ -. Y = 0 ) -> Y e. { -u 1 , 1 , 0 } ) |
| 36 |
|
simpr |
|- ( ( ( X e. { -u 1 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ -. Y = 0 ) -> -. Y = 0 ) |
| 37 |
36
|
neqned |
|- ( ( ( X e. { -u 1 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ -. Y = 0 ) -> Y =/= 0 ) |
| 38 |
35 37
|
jca |
|- ( ( ( X e. { -u 1 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ -. Y = 0 ) -> ( Y e. { -u 1 , 1 , 0 } /\ Y =/= 0 ) ) |
| 39 |
|
eldifsn |
|- ( Y e. ( { -u 1 , 1 , 0 } \ { 0 } ) <-> ( Y e. { -u 1 , 1 , 0 } /\ Y =/= 0 ) ) |
| 40 |
|
neg1ne0 |
|- -u 1 =/= 0 |
| 41 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 42 |
|
diftpsn3 |
|- ( ( -u 1 =/= 0 /\ 1 =/= 0 ) -> ( { -u 1 , 1 , 0 } \ { 0 } ) = { -u 1 , 1 } ) |
| 43 |
40 41 42
|
mp2an |
|- ( { -u 1 , 1 , 0 } \ { 0 } ) = { -u 1 , 1 } |
| 44 |
43
|
eleq2i |
|- ( Y e. ( { -u 1 , 1 , 0 } \ { 0 } ) <-> Y e. { -u 1 , 1 } ) |
| 45 |
39 44
|
bitr3i |
|- ( ( Y e. { -u 1 , 1 , 0 } /\ Y =/= 0 ) <-> Y e. { -u 1 , 1 } ) |
| 46 |
38 45
|
sylib |
|- ( ( ( X e. { -u 1 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ -. Y = 0 ) -> Y e. { -u 1 , 1 } ) |
| 47 |
|
neirr |
|- -. -u 1 =/= -u 1 |
| 48 |
|
0le1 |
|- 0 <_ 1 |
| 49 |
|
1re |
|- 1 e. RR |
| 50 |
18 49
|
lenlti |
|- ( 0 <_ 1 <-> -. 1 < 0 ) |
| 51 |
48 50
|
mpbi |
|- -. 1 < 0 |
| 52 |
|
neg1mulneg1e1 |
|- ( -u 1 x. -u 1 ) = 1 |
| 53 |
52
|
breq1i |
|- ( ( -u 1 x. -u 1 ) < 0 <-> 1 < 0 ) |
| 54 |
51 53
|
mtbir |
|- -. ( -u 1 x. -u 1 ) < 0 |
| 55 |
47 54
|
2false |
|- ( -u 1 =/= -u 1 <-> ( -u 1 x. -u 1 ) < 0 ) |
| 56 |
|
neeq1 |
|- ( Y = -u 1 -> ( Y =/= -u 1 <-> -u 1 =/= -u 1 ) ) |
| 57 |
|
oveq2 |
|- ( Y = -u 1 -> ( -u 1 x. Y ) = ( -u 1 x. -u 1 ) ) |
| 58 |
57
|
breq1d |
|- ( Y = -u 1 -> ( ( -u 1 x. Y ) < 0 <-> ( -u 1 x. -u 1 ) < 0 ) ) |
| 59 |
56 58
|
bibi12d |
|- ( Y = -u 1 -> ( ( Y =/= -u 1 <-> ( -u 1 x. Y ) < 0 ) <-> ( -u 1 =/= -u 1 <-> ( -u 1 x. -u 1 ) < 0 ) ) ) |
| 60 |
55 59
|
mpbiri |
|- ( Y = -u 1 -> ( Y =/= -u 1 <-> ( -u 1 x. Y ) < 0 ) ) |
| 61 |
60
|
adantl |
|- ( ( Y e. { -u 1 , 1 } /\ Y = -u 1 ) -> ( Y =/= -u 1 <-> ( -u 1 x. Y ) < 0 ) ) |
| 62 |
|
neg1rr |
|- -u 1 e. RR |
| 63 |
|
neg1lt0 |
|- -u 1 < 0 |
| 64 |
|
0lt1 |
|- 0 < 1 |
| 65 |
62 18 49
|
lttri |
|- ( ( -u 1 < 0 /\ 0 < 1 ) -> -u 1 < 1 ) |
| 66 |
63 64 65
|
mp2an |
|- -u 1 < 1 |
| 67 |
62 66
|
gtneii |
|- 1 =/= -u 1 |
| 68 |
22
|
mulridi |
|- ( -u 1 x. 1 ) = -u 1 |
| 69 |
68 63
|
eqbrtri |
|- ( -u 1 x. 1 ) < 0 |
| 70 |
67 69
|
2th |
|- ( 1 =/= -u 1 <-> ( -u 1 x. 1 ) < 0 ) |
| 71 |
|
neeq1 |
|- ( Y = 1 -> ( Y =/= -u 1 <-> 1 =/= -u 1 ) ) |
| 72 |
|
oveq2 |
|- ( Y = 1 -> ( -u 1 x. Y ) = ( -u 1 x. 1 ) ) |
| 73 |
72
|
breq1d |
|- ( Y = 1 -> ( ( -u 1 x. Y ) < 0 <-> ( -u 1 x. 1 ) < 0 ) ) |
| 74 |
71 73
|
bibi12d |
|- ( Y = 1 -> ( ( Y =/= -u 1 <-> ( -u 1 x. Y ) < 0 ) <-> ( 1 =/= -u 1 <-> ( -u 1 x. 1 ) < 0 ) ) ) |
| 75 |
70 74
|
mpbiri |
|- ( Y = 1 -> ( Y =/= -u 1 <-> ( -u 1 x. Y ) < 0 ) ) |
| 76 |
75
|
adantl |
|- ( ( Y e. { -u 1 , 1 } /\ Y = 1 ) -> ( Y =/= -u 1 <-> ( -u 1 x. Y ) < 0 ) ) |
| 77 |
|
elpri |
|- ( Y e. { -u 1 , 1 } -> ( Y = -u 1 \/ Y = 1 ) ) |
| 78 |
61 76 77
|
mpjaodan |
|- ( Y e. { -u 1 , 1 } -> ( Y =/= -u 1 <-> ( -u 1 x. Y ) < 0 ) ) |
| 79 |
78
|
adantr |
|- ( ( Y e. { -u 1 , 1 } /\ X = -u 1 ) -> ( Y =/= -u 1 <-> ( -u 1 x. Y ) < 0 ) ) |
| 80 |
|
neeq2 |
|- ( X = -u 1 -> ( Y =/= X <-> Y =/= -u 1 ) ) |
| 81 |
|
oveq1 |
|- ( X = -u 1 -> ( X x. Y ) = ( -u 1 x. Y ) ) |
| 82 |
81
|
breq1d |
|- ( X = -u 1 -> ( ( X x. Y ) < 0 <-> ( -u 1 x. Y ) < 0 ) ) |
| 83 |
80 82
|
bibi12d |
|- ( X = -u 1 -> ( ( Y =/= X <-> ( X x. Y ) < 0 ) <-> ( Y =/= -u 1 <-> ( -u 1 x. Y ) < 0 ) ) ) |
| 84 |
83
|
adantl |
|- ( ( Y e. { -u 1 , 1 } /\ X = -u 1 ) -> ( ( Y =/= X <-> ( X x. Y ) < 0 ) <-> ( Y =/= -u 1 <-> ( -u 1 x. Y ) < 0 ) ) ) |
| 85 |
79 84
|
mpbird |
|- ( ( Y e. { -u 1 , 1 } /\ X = -u 1 ) -> ( Y =/= X <-> ( X x. Y ) < 0 ) ) |
| 86 |
46 85
|
sylan |
|- ( ( ( ( X e. { -u 1 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ -. Y = 0 ) /\ X = -u 1 ) -> ( Y =/= X <-> ( X x. Y ) < 0 ) ) |
| 87 |
67
|
necomi |
|- -u 1 =/= 1 |
| 88 |
22 23
|
mulcomi |
|- ( -u 1 x. 1 ) = ( 1 x. -u 1 ) |
| 89 |
88
|
breq1i |
|- ( ( -u 1 x. 1 ) < 0 <-> ( 1 x. -u 1 ) < 0 ) |
| 90 |
69 89
|
mpbi |
|- ( 1 x. -u 1 ) < 0 |
| 91 |
87 90
|
2th |
|- ( -u 1 =/= 1 <-> ( 1 x. -u 1 ) < 0 ) |
| 92 |
|
neeq1 |
|- ( Y = -u 1 -> ( Y =/= 1 <-> -u 1 =/= 1 ) ) |
| 93 |
|
oveq2 |
|- ( Y = -u 1 -> ( 1 x. Y ) = ( 1 x. -u 1 ) ) |
| 94 |
93
|
breq1d |
|- ( Y = -u 1 -> ( ( 1 x. Y ) < 0 <-> ( 1 x. -u 1 ) < 0 ) ) |
| 95 |
92 94
|
bibi12d |
|- ( Y = -u 1 -> ( ( Y =/= 1 <-> ( 1 x. Y ) < 0 ) <-> ( -u 1 =/= 1 <-> ( 1 x. -u 1 ) < 0 ) ) ) |
| 96 |
91 95
|
mpbiri |
|- ( Y = -u 1 -> ( Y =/= 1 <-> ( 1 x. Y ) < 0 ) ) |
| 97 |
96
|
adantl |
|- ( ( Y e. { -u 1 , 1 } /\ Y = -u 1 ) -> ( Y =/= 1 <-> ( 1 x. Y ) < 0 ) ) |
| 98 |
|
neirr |
|- -. 1 =/= 1 |
| 99 |
23
|
mulridi |
|- ( 1 x. 1 ) = 1 |
| 100 |
99
|
breq1i |
|- ( ( 1 x. 1 ) < 0 <-> 1 < 0 ) |
| 101 |
51 100
|
mtbir |
|- -. ( 1 x. 1 ) < 0 |
| 102 |
98 101
|
2false |
|- ( 1 =/= 1 <-> ( 1 x. 1 ) < 0 ) |
| 103 |
|
neeq1 |
|- ( Y = 1 -> ( Y =/= 1 <-> 1 =/= 1 ) ) |
| 104 |
|
oveq2 |
|- ( Y = 1 -> ( 1 x. Y ) = ( 1 x. 1 ) ) |
| 105 |
104
|
breq1d |
|- ( Y = 1 -> ( ( 1 x. Y ) < 0 <-> ( 1 x. 1 ) < 0 ) ) |
| 106 |
103 105
|
bibi12d |
|- ( Y = 1 -> ( ( Y =/= 1 <-> ( 1 x. Y ) < 0 ) <-> ( 1 =/= 1 <-> ( 1 x. 1 ) < 0 ) ) ) |
| 107 |
102 106
|
mpbiri |
|- ( Y = 1 -> ( Y =/= 1 <-> ( 1 x. Y ) < 0 ) ) |
| 108 |
107
|
adantl |
|- ( ( Y e. { -u 1 , 1 } /\ Y = 1 ) -> ( Y =/= 1 <-> ( 1 x. Y ) < 0 ) ) |
| 109 |
97 108 77
|
mpjaodan |
|- ( Y e. { -u 1 , 1 } -> ( Y =/= 1 <-> ( 1 x. Y ) < 0 ) ) |
| 110 |
109
|
adantr |
|- ( ( Y e. { -u 1 , 1 } /\ X = 1 ) -> ( Y =/= 1 <-> ( 1 x. Y ) < 0 ) ) |
| 111 |
|
neeq2 |
|- ( X = 1 -> ( Y =/= X <-> Y =/= 1 ) ) |
| 112 |
|
oveq1 |
|- ( X = 1 -> ( X x. Y ) = ( 1 x. Y ) ) |
| 113 |
112
|
breq1d |
|- ( X = 1 -> ( ( X x. Y ) < 0 <-> ( 1 x. Y ) < 0 ) ) |
| 114 |
111 113
|
bibi12d |
|- ( X = 1 -> ( ( Y =/= X <-> ( X x. Y ) < 0 ) <-> ( Y =/= 1 <-> ( 1 x. Y ) < 0 ) ) ) |
| 115 |
114
|
adantl |
|- ( ( Y e. { -u 1 , 1 } /\ X = 1 ) -> ( ( Y =/= X <-> ( X x. Y ) < 0 ) <-> ( Y =/= 1 <-> ( 1 x. Y ) < 0 ) ) ) |
| 116 |
110 115
|
mpbird |
|- ( ( Y e. { -u 1 , 1 } /\ X = 1 ) -> ( Y =/= X <-> ( X x. Y ) < 0 ) ) |
| 117 |
46 116
|
sylan |
|- ( ( ( ( X e. { -u 1 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ -. Y = 0 ) /\ X = 1 ) -> ( Y =/= X <-> ( X x. Y ) < 0 ) ) |
| 118 |
|
elpri |
|- ( X e. { -u 1 , 1 } -> ( X = -u 1 \/ X = 1 ) ) |
| 119 |
118
|
ad2antrr |
|- ( ( ( X e. { -u 1 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ -. Y = 0 ) -> ( X = -u 1 \/ X = 1 ) ) |
| 120 |
86 117 119
|
mpjaodan |
|- ( ( ( X e. { -u 1 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ -. Y = 0 ) -> ( Y =/= X <-> ( X x. Y ) < 0 ) ) |
| 121 |
13 15 32 120
|
ifbothda |
|- ( ( X e. { -u 1 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) -> ( if ( Y = 0 , X , Y ) =/= X <-> ( X x. Y ) < 0 ) ) |
| 122 |
11 121
|
bitrd |
|- ( ( X e. { -u 1 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) -> ( ( X .+^ Y ) =/= X <-> ( X x. Y ) < 0 ) ) |