| Step | Hyp | Ref | Expression | 
						
							| 1 |  | signsw.p |  |-  .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) ) | 
						
							| 2 |  | signsw.w |  |-  W = { <. ( Base ` ndx ) , { -u 1 , 0 , 1 } >. , <. ( +g ` ndx ) , .+^ >. } | 
						
							| 3 |  | df-pr |  |-  { -u 1 , 1 } = ( { -u 1 } u. { 1 } ) | 
						
							| 4 |  | snsstp1 |  |-  { -u 1 } C_ { -u 1 , 0 , 1 } | 
						
							| 5 |  | snsstp3 |  |-  { 1 } C_ { -u 1 , 0 , 1 } | 
						
							| 6 | 4 5 | unssi |  |-  ( { -u 1 } u. { 1 } ) C_ { -u 1 , 0 , 1 } | 
						
							| 7 | 3 6 | eqsstri |  |-  { -u 1 , 1 } C_ { -u 1 , 0 , 1 } | 
						
							| 8 | 7 | sseli |  |-  ( X e. { -u 1 , 1 } -> X e. { -u 1 , 0 , 1 } ) | 
						
							| 9 | 1 | signspval |  |-  ( ( X e. { -u 1 , 0 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) -> ( X .+^ Y ) = if ( Y = 0 , X , Y ) ) | 
						
							| 10 | 8 9 | sylan |  |-  ( ( X e. { -u 1 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) -> ( X .+^ Y ) = if ( Y = 0 , X , Y ) ) | 
						
							| 11 | 10 | neeq1d |  |-  ( ( X e. { -u 1 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) -> ( ( X .+^ Y ) =/= X <-> if ( Y = 0 , X , Y ) =/= X ) ) | 
						
							| 12 |  | neeq1 |  |-  ( X = if ( Y = 0 , X , Y ) -> ( X =/= X <-> if ( Y = 0 , X , Y ) =/= X ) ) | 
						
							| 13 | 12 | bibi1d |  |-  ( X = if ( Y = 0 , X , Y ) -> ( ( X =/= X <-> ( X x. Y ) < 0 ) <-> ( if ( Y = 0 , X , Y ) =/= X <-> ( X x. Y ) < 0 ) ) ) | 
						
							| 14 |  | neeq1 |  |-  ( Y = if ( Y = 0 , X , Y ) -> ( Y =/= X <-> if ( Y = 0 , X , Y ) =/= X ) ) | 
						
							| 15 | 14 | bibi1d |  |-  ( Y = if ( Y = 0 , X , Y ) -> ( ( Y =/= X <-> ( X x. Y ) < 0 ) <-> ( if ( Y = 0 , X , Y ) =/= X <-> ( X x. Y ) < 0 ) ) ) | 
						
							| 16 |  | neirr |  |-  -. X =/= X | 
						
							| 17 | 16 | a1i |  |-  ( ( ( X e. { -u 1 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ Y = 0 ) -> -. X =/= X ) | 
						
							| 18 |  | 0re |  |-  0 e. RR | 
						
							| 19 | 18 | ltnri |  |-  -. 0 < 0 | 
						
							| 20 |  | simpr |  |-  ( ( ( X e. { -u 1 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ Y = 0 ) -> Y = 0 ) | 
						
							| 21 | 20 | oveq2d |  |-  ( ( ( X e. { -u 1 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ Y = 0 ) -> ( X x. Y ) = ( X x. 0 ) ) | 
						
							| 22 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 23 |  | ax-1cn |  |-  1 e. CC | 
						
							| 24 |  | prssi |  |-  ( ( -u 1 e. CC /\ 1 e. CC ) -> { -u 1 , 1 } C_ CC ) | 
						
							| 25 | 22 23 24 | mp2an |  |-  { -u 1 , 1 } C_ CC | 
						
							| 26 |  | simpll |  |-  ( ( ( X e. { -u 1 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ Y = 0 ) -> X e. { -u 1 , 1 } ) | 
						
							| 27 | 25 26 | sselid |  |-  ( ( ( X e. { -u 1 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ Y = 0 ) -> X e. CC ) | 
						
							| 28 | 27 | mul01d |  |-  ( ( ( X e. { -u 1 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ Y = 0 ) -> ( X x. 0 ) = 0 ) | 
						
							| 29 | 21 28 | eqtrd |  |-  ( ( ( X e. { -u 1 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ Y = 0 ) -> ( X x. Y ) = 0 ) | 
						
							| 30 | 29 | breq1d |  |-  ( ( ( X e. { -u 1 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ Y = 0 ) -> ( ( X x. Y ) < 0 <-> 0 < 0 ) ) | 
						
							| 31 | 19 30 | mtbiri |  |-  ( ( ( X e. { -u 1 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ Y = 0 ) -> -. ( X x. Y ) < 0 ) | 
						
							| 32 | 17 31 | 2falsed |  |-  ( ( ( X e. { -u 1 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ Y = 0 ) -> ( X =/= X <-> ( X x. Y ) < 0 ) ) | 
						
							| 33 |  | simplr |  |-  ( ( ( X e. { -u 1 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ -. Y = 0 ) -> Y e. { -u 1 , 0 , 1 } ) | 
						
							| 34 |  | tpcomb |  |-  { -u 1 , 0 , 1 } = { -u 1 , 1 , 0 } | 
						
							| 35 | 33 34 | eleqtrdi |  |-  ( ( ( X e. { -u 1 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ -. Y = 0 ) -> Y e. { -u 1 , 1 , 0 } ) | 
						
							| 36 |  | simpr |  |-  ( ( ( X e. { -u 1 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ -. Y = 0 ) -> -. Y = 0 ) | 
						
							| 37 | 36 | neqned |  |-  ( ( ( X e. { -u 1 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ -. Y = 0 ) -> Y =/= 0 ) | 
						
							| 38 | 35 37 | jca |  |-  ( ( ( X e. { -u 1 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ -. Y = 0 ) -> ( Y e. { -u 1 , 1 , 0 } /\ Y =/= 0 ) ) | 
						
							| 39 |  | eldifsn |  |-  ( Y e. ( { -u 1 , 1 , 0 } \ { 0 } ) <-> ( Y e. { -u 1 , 1 , 0 } /\ Y =/= 0 ) ) | 
						
							| 40 |  | neg1ne0 |  |-  -u 1 =/= 0 | 
						
							| 41 |  | ax-1ne0 |  |-  1 =/= 0 | 
						
							| 42 |  | diftpsn3 |  |-  ( ( -u 1 =/= 0 /\ 1 =/= 0 ) -> ( { -u 1 , 1 , 0 } \ { 0 } ) = { -u 1 , 1 } ) | 
						
							| 43 | 40 41 42 | mp2an |  |-  ( { -u 1 , 1 , 0 } \ { 0 } ) = { -u 1 , 1 } | 
						
							| 44 | 43 | eleq2i |  |-  ( Y e. ( { -u 1 , 1 , 0 } \ { 0 } ) <-> Y e. { -u 1 , 1 } ) | 
						
							| 45 | 39 44 | bitr3i |  |-  ( ( Y e. { -u 1 , 1 , 0 } /\ Y =/= 0 ) <-> Y e. { -u 1 , 1 } ) | 
						
							| 46 | 38 45 | sylib |  |-  ( ( ( X e. { -u 1 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ -. Y = 0 ) -> Y e. { -u 1 , 1 } ) | 
						
							| 47 |  | neirr |  |-  -. -u 1 =/= -u 1 | 
						
							| 48 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 49 |  | 1re |  |-  1 e. RR | 
						
							| 50 | 18 49 | lenlti |  |-  ( 0 <_ 1 <-> -. 1 < 0 ) | 
						
							| 51 | 48 50 | mpbi |  |-  -. 1 < 0 | 
						
							| 52 |  | neg1mulneg1e1 |  |-  ( -u 1 x. -u 1 ) = 1 | 
						
							| 53 | 52 | breq1i |  |-  ( ( -u 1 x. -u 1 ) < 0 <-> 1 < 0 ) | 
						
							| 54 | 51 53 | mtbir |  |-  -. ( -u 1 x. -u 1 ) < 0 | 
						
							| 55 | 47 54 | 2false |  |-  ( -u 1 =/= -u 1 <-> ( -u 1 x. -u 1 ) < 0 ) | 
						
							| 56 |  | neeq1 |  |-  ( Y = -u 1 -> ( Y =/= -u 1 <-> -u 1 =/= -u 1 ) ) | 
						
							| 57 |  | oveq2 |  |-  ( Y = -u 1 -> ( -u 1 x. Y ) = ( -u 1 x. -u 1 ) ) | 
						
							| 58 | 57 | breq1d |  |-  ( Y = -u 1 -> ( ( -u 1 x. Y ) < 0 <-> ( -u 1 x. -u 1 ) < 0 ) ) | 
						
							| 59 | 56 58 | bibi12d |  |-  ( Y = -u 1 -> ( ( Y =/= -u 1 <-> ( -u 1 x. Y ) < 0 ) <-> ( -u 1 =/= -u 1 <-> ( -u 1 x. -u 1 ) < 0 ) ) ) | 
						
							| 60 | 55 59 | mpbiri |  |-  ( Y = -u 1 -> ( Y =/= -u 1 <-> ( -u 1 x. Y ) < 0 ) ) | 
						
							| 61 | 60 | adantl |  |-  ( ( Y e. { -u 1 , 1 } /\ Y = -u 1 ) -> ( Y =/= -u 1 <-> ( -u 1 x. Y ) < 0 ) ) | 
						
							| 62 |  | neg1rr |  |-  -u 1 e. RR | 
						
							| 63 |  | neg1lt0 |  |-  -u 1 < 0 | 
						
							| 64 |  | 0lt1 |  |-  0 < 1 | 
						
							| 65 | 62 18 49 | lttri |  |-  ( ( -u 1 < 0 /\ 0 < 1 ) -> -u 1 < 1 ) | 
						
							| 66 | 63 64 65 | mp2an |  |-  -u 1 < 1 | 
						
							| 67 | 62 66 | gtneii |  |-  1 =/= -u 1 | 
						
							| 68 | 22 | mulridi |  |-  ( -u 1 x. 1 ) = -u 1 | 
						
							| 69 | 68 63 | eqbrtri |  |-  ( -u 1 x. 1 ) < 0 | 
						
							| 70 | 67 69 | 2th |  |-  ( 1 =/= -u 1 <-> ( -u 1 x. 1 ) < 0 ) | 
						
							| 71 |  | neeq1 |  |-  ( Y = 1 -> ( Y =/= -u 1 <-> 1 =/= -u 1 ) ) | 
						
							| 72 |  | oveq2 |  |-  ( Y = 1 -> ( -u 1 x. Y ) = ( -u 1 x. 1 ) ) | 
						
							| 73 | 72 | breq1d |  |-  ( Y = 1 -> ( ( -u 1 x. Y ) < 0 <-> ( -u 1 x. 1 ) < 0 ) ) | 
						
							| 74 | 71 73 | bibi12d |  |-  ( Y = 1 -> ( ( Y =/= -u 1 <-> ( -u 1 x. Y ) < 0 ) <-> ( 1 =/= -u 1 <-> ( -u 1 x. 1 ) < 0 ) ) ) | 
						
							| 75 | 70 74 | mpbiri |  |-  ( Y = 1 -> ( Y =/= -u 1 <-> ( -u 1 x. Y ) < 0 ) ) | 
						
							| 76 | 75 | adantl |  |-  ( ( Y e. { -u 1 , 1 } /\ Y = 1 ) -> ( Y =/= -u 1 <-> ( -u 1 x. Y ) < 0 ) ) | 
						
							| 77 |  | elpri |  |-  ( Y e. { -u 1 , 1 } -> ( Y = -u 1 \/ Y = 1 ) ) | 
						
							| 78 | 61 76 77 | mpjaodan |  |-  ( Y e. { -u 1 , 1 } -> ( Y =/= -u 1 <-> ( -u 1 x. Y ) < 0 ) ) | 
						
							| 79 | 78 | adantr |  |-  ( ( Y e. { -u 1 , 1 } /\ X = -u 1 ) -> ( Y =/= -u 1 <-> ( -u 1 x. Y ) < 0 ) ) | 
						
							| 80 |  | neeq2 |  |-  ( X = -u 1 -> ( Y =/= X <-> Y =/= -u 1 ) ) | 
						
							| 81 |  | oveq1 |  |-  ( X = -u 1 -> ( X x. Y ) = ( -u 1 x. Y ) ) | 
						
							| 82 | 81 | breq1d |  |-  ( X = -u 1 -> ( ( X x. Y ) < 0 <-> ( -u 1 x. Y ) < 0 ) ) | 
						
							| 83 | 80 82 | bibi12d |  |-  ( X = -u 1 -> ( ( Y =/= X <-> ( X x. Y ) < 0 ) <-> ( Y =/= -u 1 <-> ( -u 1 x. Y ) < 0 ) ) ) | 
						
							| 84 | 83 | adantl |  |-  ( ( Y e. { -u 1 , 1 } /\ X = -u 1 ) -> ( ( Y =/= X <-> ( X x. Y ) < 0 ) <-> ( Y =/= -u 1 <-> ( -u 1 x. Y ) < 0 ) ) ) | 
						
							| 85 | 79 84 | mpbird |  |-  ( ( Y e. { -u 1 , 1 } /\ X = -u 1 ) -> ( Y =/= X <-> ( X x. Y ) < 0 ) ) | 
						
							| 86 | 46 85 | sylan |  |-  ( ( ( ( X e. { -u 1 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ -. Y = 0 ) /\ X = -u 1 ) -> ( Y =/= X <-> ( X x. Y ) < 0 ) ) | 
						
							| 87 | 67 | necomi |  |-  -u 1 =/= 1 | 
						
							| 88 | 22 23 | mulcomi |  |-  ( -u 1 x. 1 ) = ( 1 x. -u 1 ) | 
						
							| 89 | 88 | breq1i |  |-  ( ( -u 1 x. 1 ) < 0 <-> ( 1 x. -u 1 ) < 0 ) | 
						
							| 90 | 69 89 | mpbi |  |-  ( 1 x. -u 1 ) < 0 | 
						
							| 91 | 87 90 | 2th |  |-  ( -u 1 =/= 1 <-> ( 1 x. -u 1 ) < 0 ) | 
						
							| 92 |  | neeq1 |  |-  ( Y = -u 1 -> ( Y =/= 1 <-> -u 1 =/= 1 ) ) | 
						
							| 93 |  | oveq2 |  |-  ( Y = -u 1 -> ( 1 x. Y ) = ( 1 x. -u 1 ) ) | 
						
							| 94 | 93 | breq1d |  |-  ( Y = -u 1 -> ( ( 1 x. Y ) < 0 <-> ( 1 x. -u 1 ) < 0 ) ) | 
						
							| 95 | 92 94 | bibi12d |  |-  ( Y = -u 1 -> ( ( Y =/= 1 <-> ( 1 x. Y ) < 0 ) <-> ( -u 1 =/= 1 <-> ( 1 x. -u 1 ) < 0 ) ) ) | 
						
							| 96 | 91 95 | mpbiri |  |-  ( Y = -u 1 -> ( Y =/= 1 <-> ( 1 x. Y ) < 0 ) ) | 
						
							| 97 | 96 | adantl |  |-  ( ( Y e. { -u 1 , 1 } /\ Y = -u 1 ) -> ( Y =/= 1 <-> ( 1 x. Y ) < 0 ) ) | 
						
							| 98 |  | neirr |  |-  -. 1 =/= 1 | 
						
							| 99 | 23 | mulridi |  |-  ( 1 x. 1 ) = 1 | 
						
							| 100 | 99 | breq1i |  |-  ( ( 1 x. 1 ) < 0 <-> 1 < 0 ) | 
						
							| 101 | 51 100 | mtbir |  |-  -. ( 1 x. 1 ) < 0 | 
						
							| 102 | 98 101 | 2false |  |-  ( 1 =/= 1 <-> ( 1 x. 1 ) < 0 ) | 
						
							| 103 |  | neeq1 |  |-  ( Y = 1 -> ( Y =/= 1 <-> 1 =/= 1 ) ) | 
						
							| 104 |  | oveq2 |  |-  ( Y = 1 -> ( 1 x. Y ) = ( 1 x. 1 ) ) | 
						
							| 105 | 104 | breq1d |  |-  ( Y = 1 -> ( ( 1 x. Y ) < 0 <-> ( 1 x. 1 ) < 0 ) ) | 
						
							| 106 | 103 105 | bibi12d |  |-  ( Y = 1 -> ( ( Y =/= 1 <-> ( 1 x. Y ) < 0 ) <-> ( 1 =/= 1 <-> ( 1 x. 1 ) < 0 ) ) ) | 
						
							| 107 | 102 106 | mpbiri |  |-  ( Y = 1 -> ( Y =/= 1 <-> ( 1 x. Y ) < 0 ) ) | 
						
							| 108 | 107 | adantl |  |-  ( ( Y e. { -u 1 , 1 } /\ Y = 1 ) -> ( Y =/= 1 <-> ( 1 x. Y ) < 0 ) ) | 
						
							| 109 | 97 108 77 | mpjaodan |  |-  ( Y e. { -u 1 , 1 } -> ( Y =/= 1 <-> ( 1 x. Y ) < 0 ) ) | 
						
							| 110 | 109 | adantr |  |-  ( ( Y e. { -u 1 , 1 } /\ X = 1 ) -> ( Y =/= 1 <-> ( 1 x. Y ) < 0 ) ) | 
						
							| 111 |  | neeq2 |  |-  ( X = 1 -> ( Y =/= X <-> Y =/= 1 ) ) | 
						
							| 112 |  | oveq1 |  |-  ( X = 1 -> ( X x. Y ) = ( 1 x. Y ) ) | 
						
							| 113 | 112 | breq1d |  |-  ( X = 1 -> ( ( X x. Y ) < 0 <-> ( 1 x. Y ) < 0 ) ) | 
						
							| 114 | 111 113 | bibi12d |  |-  ( X = 1 -> ( ( Y =/= X <-> ( X x. Y ) < 0 ) <-> ( Y =/= 1 <-> ( 1 x. Y ) < 0 ) ) ) | 
						
							| 115 | 114 | adantl |  |-  ( ( Y e. { -u 1 , 1 } /\ X = 1 ) -> ( ( Y =/= X <-> ( X x. Y ) < 0 ) <-> ( Y =/= 1 <-> ( 1 x. Y ) < 0 ) ) ) | 
						
							| 116 | 110 115 | mpbird |  |-  ( ( Y e. { -u 1 , 1 } /\ X = 1 ) -> ( Y =/= X <-> ( X x. Y ) < 0 ) ) | 
						
							| 117 | 46 116 | sylan |  |-  ( ( ( ( X e. { -u 1 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ -. Y = 0 ) /\ X = 1 ) -> ( Y =/= X <-> ( X x. Y ) < 0 ) ) | 
						
							| 118 |  | elpri |  |-  ( X e. { -u 1 , 1 } -> ( X = -u 1 \/ X = 1 ) ) | 
						
							| 119 | 118 | ad2antrr |  |-  ( ( ( X e. { -u 1 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ -. Y = 0 ) -> ( X = -u 1 \/ X = 1 ) ) | 
						
							| 120 | 86 117 119 | mpjaodan |  |-  ( ( ( X e. { -u 1 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ -. Y = 0 ) -> ( Y =/= X <-> ( X x. Y ) < 0 ) ) | 
						
							| 121 | 13 15 32 120 | ifbothda |  |-  ( ( X e. { -u 1 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) -> ( if ( Y = 0 , X , Y ) =/= X <-> ( X x. Y ) < 0 ) ) | 
						
							| 122 | 11 121 | bitrd |  |-  ( ( X e. { -u 1 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) -> ( ( X .+^ Y ) =/= X <-> ( X x. Y ) < 0 ) ) |