| Step | Hyp | Ref | Expression | 
						
							| 1 |  | signsw.p | ⊢  ⨣   =  ( 𝑎  ∈  { - 1 ,  0 ,  1 } ,  𝑏  ∈  { - 1 ,  0 ,  1 }  ↦  if ( 𝑏  =  0 ,  𝑎 ,  𝑏 ) ) | 
						
							| 2 |  | signsw.w | ⊢ 𝑊  =  { 〈 ( Base ‘ ndx ) ,  { - 1 ,  0 ,  1 } 〉 ,  〈 ( +g ‘ ndx ) ,   ⨣  〉 } | 
						
							| 3 |  | df-pr | ⊢ { - 1 ,  1 }  =  ( { - 1 }  ∪  { 1 } ) | 
						
							| 4 |  | snsstp1 | ⊢ { - 1 }  ⊆  { - 1 ,  0 ,  1 } | 
						
							| 5 |  | snsstp3 | ⊢ { 1 }  ⊆  { - 1 ,  0 ,  1 } | 
						
							| 6 | 4 5 | unssi | ⊢ ( { - 1 }  ∪  { 1 } )  ⊆  { - 1 ,  0 ,  1 } | 
						
							| 7 | 3 6 | eqsstri | ⊢ { - 1 ,  1 }  ⊆  { - 1 ,  0 ,  1 } | 
						
							| 8 | 7 | sseli | ⊢ ( 𝑋  ∈  { - 1 ,  1 }  →  𝑋  ∈  { - 1 ,  0 ,  1 } ) | 
						
							| 9 | 1 | signspval | ⊢ ( ( 𝑋  ∈  { - 1 ,  0 ,  1 }  ∧  𝑌  ∈  { - 1 ,  0 ,  1 } )  →  ( 𝑋  ⨣  𝑌 )  =  if ( 𝑌  =  0 ,  𝑋 ,  𝑌 ) ) | 
						
							| 10 | 8 9 | sylan | ⊢ ( ( 𝑋  ∈  { - 1 ,  1 }  ∧  𝑌  ∈  { - 1 ,  0 ,  1 } )  →  ( 𝑋  ⨣  𝑌 )  =  if ( 𝑌  =  0 ,  𝑋 ,  𝑌 ) ) | 
						
							| 11 | 10 | neeq1d | ⊢ ( ( 𝑋  ∈  { - 1 ,  1 }  ∧  𝑌  ∈  { - 1 ,  0 ,  1 } )  →  ( ( 𝑋  ⨣  𝑌 )  ≠  𝑋  ↔  if ( 𝑌  =  0 ,  𝑋 ,  𝑌 )  ≠  𝑋 ) ) | 
						
							| 12 |  | neeq1 | ⊢ ( 𝑋  =  if ( 𝑌  =  0 ,  𝑋 ,  𝑌 )  →  ( 𝑋  ≠  𝑋  ↔  if ( 𝑌  =  0 ,  𝑋 ,  𝑌 )  ≠  𝑋 ) ) | 
						
							| 13 | 12 | bibi1d | ⊢ ( 𝑋  =  if ( 𝑌  =  0 ,  𝑋 ,  𝑌 )  →  ( ( 𝑋  ≠  𝑋  ↔  ( 𝑋  ·  𝑌 )  <  0 )  ↔  ( if ( 𝑌  =  0 ,  𝑋 ,  𝑌 )  ≠  𝑋  ↔  ( 𝑋  ·  𝑌 )  <  0 ) ) ) | 
						
							| 14 |  | neeq1 | ⊢ ( 𝑌  =  if ( 𝑌  =  0 ,  𝑋 ,  𝑌 )  →  ( 𝑌  ≠  𝑋  ↔  if ( 𝑌  =  0 ,  𝑋 ,  𝑌 )  ≠  𝑋 ) ) | 
						
							| 15 | 14 | bibi1d | ⊢ ( 𝑌  =  if ( 𝑌  =  0 ,  𝑋 ,  𝑌 )  →  ( ( 𝑌  ≠  𝑋  ↔  ( 𝑋  ·  𝑌 )  <  0 )  ↔  ( if ( 𝑌  =  0 ,  𝑋 ,  𝑌 )  ≠  𝑋  ↔  ( 𝑋  ·  𝑌 )  <  0 ) ) ) | 
						
							| 16 |  | neirr | ⊢ ¬  𝑋  ≠  𝑋 | 
						
							| 17 | 16 | a1i | ⊢ ( ( ( 𝑋  ∈  { - 1 ,  1 }  ∧  𝑌  ∈  { - 1 ,  0 ,  1 } )  ∧  𝑌  =  0 )  →  ¬  𝑋  ≠  𝑋 ) | 
						
							| 18 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 19 | 18 | ltnri | ⊢ ¬  0  <  0 | 
						
							| 20 |  | simpr | ⊢ ( ( ( 𝑋  ∈  { - 1 ,  1 }  ∧  𝑌  ∈  { - 1 ,  0 ,  1 } )  ∧  𝑌  =  0 )  →  𝑌  =  0 ) | 
						
							| 21 | 20 | oveq2d | ⊢ ( ( ( 𝑋  ∈  { - 1 ,  1 }  ∧  𝑌  ∈  { - 1 ,  0 ,  1 } )  ∧  𝑌  =  0 )  →  ( 𝑋  ·  𝑌 )  =  ( 𝑋  ·  0 ) ) | 
						
							| 22 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 23 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 24 |  | prssi | ⊢ ( ( - 1  ∈  ℂ  ∧  1  ∈  ℂ )  →  { - 1 ,  1 }  ⊆  ℂ ) | 
						
							| 25 | 22 23 24 | mp2an | ⊢ { - 1 ,  1 }  ⊆  ℂ | 
						
							| 26 |  | simpll | ⊢ ( ( ( 𝑋  ∈  { - 1 ,  1 }  ∧  𝑌  ∈  { - 1 ,  0 ,  1 } )  ∧  𝑌  =  0 )  →  𝑋  ∈  { - 1 ,  1 } ) | 
						
							| 27 | 25 26 | sselid | ⊢ ( ( ( 𝑋  ∈  { - 1 ,  1 }  ∧  𝑌  ∈  { - 1 ,  0 ,  1 } )  ∧  𝑌  =  0 )  →  𝑋  ∈  ℂ ) | 
						
							| 28 | 27 | mul01d | ⊢ ( ( ( 𝑋  ∈  { - 1 ,  1 }  ∧  𝑌  ∈  { - 1 ,  0 ,  1 } )  ∧  𝑌  =  0 )  →  ( 𝑋  ·  0 )  =  0 ) | 
						
							| 29 | 21 28 | eqtrd | ⊢ ( ( ( 𝑋  ∈  { - 1 ,  1 }  ∧  𝑌  ∈  { - 1 ,  0 ,  1 } )  ∧  𝑌  =  0 )  →  ( 𝑋  ·  𝑌 )  =  0 ) | 
						
							| 30 | 29 | breq1d | ⊢ ( ( ( 𝑋  ∈  { - 1 ,  1 }  ∧  𝑌  ∈  { - 1 ,  0 ,  1 } )  ∧  𝑌  =  0 )  →  ( ( 𝑋  ·  𝑌 )  <  0  ↔  0  <  0 ) ) | 
						
							| 31 | 19 30 | mtbiri | ⊢ ( ( ( 𝑋  ∈  { - 1 ,  1 }  ∧  𝑌  ∈  { - 1 ,  0 ,  1 } )  ∧  𝑌  =  0 )  →  ¬  ( 𝑋  ·  𝑌 )  <  0 ) | 
						
							| 32 | 17 31 | 2falsed | ⊢ ( ( ( 𝑋  ∈  { - 1 ,  1 }  ∧  𝑌  ∈  { - 1 ,  0 ,  1 } )  ∧  𝑌  =  0 )  →  ( 𝑋  ≠  𝑋  ↔  ( 𝑋  ·  𝑌 )  <  0 ) ) | 
						
							| 33 |  | simplr | ⊢ ( ( ( 𝑋  ∈  { - 1 ,  1 }  ∧  𝑌  ∈  { - 1 ,  0 ,  1 } )  ∧  ¬  𝑌  =  0 )  →  𝑌  ∈  { - 1 ,  0 ,  1 } ) | 
						
							| 34 |  | tpcomb | ⊢ { - 1 ,  0 ,  1 }  =  { - 1 ,  1 ,  0 } | 
						
							| 35 | 33 34 | eleqtrdi | ⊢ ( ( ( 𝑋  ∈  { - 1 ,  1 }  ∧  𝑌  ∈  { - 1 ,  0 ,  1 } )  ∧  ¬  𝑌  =  0 )  →  𝑌  ∈  { - 1 ,  1 ,  0 } ) | 
						
							| 36 |  | simpr | ⊢ ( ( ( 𝑋  ∈  { - 1 ,  1 }  ∧  𝑌  ∈  { - 1 ,  0 ,  1 } )  ∧  ¬  𝑌  =  0 )  →  ¬  𝑌  =  0 ) | 
						
							| 37 | 36 | neqned | ⊢ ( ( ( 𝑋  ∈  { - 1 ,  1 }  ∧  𝑌  ∈  { - 1 ,  0 ,  1 } )  ∧  ¬  𝑌  =  0 )  →  𝑌  ≠  0 ) | 
						
							| 38 | 35 37 | jca | ⊢ ( ( ( 𝑋  ∈  { - 1 ,  1 }  ∧  𝑌  ∈  { - 1 ,  0 ,  1 } )  ∧  ¬  𝑌  =  0 )  →  ( 𝑌  ∈  { - 1 ,  1 ,  0 }  ∧  𝑌  ≠  0 ) ) | 
						
							| 39 |  | eldifsn | ⊢ ( 𝑌  ∈  ( { - 1 ,  1 ,  0 }  ∖  { 0 } )  ↔  ( 𝑌  ∈  { - 1 ,  1 ,  0 }  ∧  𝑌  ≠  0 ) ) | 
						
							| 40 |  | neg1ne0 | ⊢ - 1  ≠  0 | 
						
							| 41 |  | ax-1ne0 | ⊢ 1  ≠  0 | 
						
							| 42 |  | diftpsn3 | ⊢ ( ( - 1  ≠  0  ∧  1  ≠  0 )  →  ( { - 1 ,  1 ,  0 }  ∖  { 0 } )  =  { - 1 ,  1 } ) | 
						
							| 43 | 40 41 42 | mp2an | ⊢ ( { - 1 ,  1 ,  0 }  ∖  { 0 } )  =  { - 1 ,  1 } | 
						
							| 44 | 43 | eleq2i | ⊢ ( 𝑌  ∈  ( { - 1 ,  1 ,  0 }  ∖  { 0 } )  ↔  𝑌  ∈  { - 1 ,  1 } ) | 
						
							| 45 | 39 44 | bitr3i | ⊢ ( ( 𝑌  ∈  { - 1 ,  1 ,  0 }  ∧  𝑌  ≠  0 )  ↔  𝑌  ∈  { - 1 ,  1 } ) | 
						
							| 46 | 38 45 | sylib | ⊢ ( ( ( 𝑋  ∈  { - 1 ,  1 }  ∧  𝑌  ∈  { - 1 ,  0 ,  1 } )  ∧  ¬  𝑌  =  0 )  →  𝑌  ∈  { - 1 ,  1 } ) | 
						
							| 47 |  | neirr | ⊢ ¬  - 1  ≠  - 1 | 
						
							| 48 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 49 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 50 | 18 49 | lenlti | ⊢ ( 0  ≤  1  ↔  ¬  1  <  0 ) | 
						
							| 51 | 48 50 | mpbi | ⊢ ¬  1  <  0 | 
						
							| 52 |  | neg1mulneg1e1 | ⊢ ( - 1  ·  - 1 )  =  1 | 
						
							| 53 | 52 | breq1i | ⊢ ( ( - 1  ·  - 1 )  <  0  ↔  1  <  0 ) | 
						
							| 54 | 51 53 | mtbir | ⊢ ¬  ( - 1  ·  - 1 )  <  0 | 
						
							| 55 | 47 54 | 2false | ⊢ ( - 1  ≠  - 1  ↔  ( - 1  ·  - 1 )  <  0 ) | 
						
							| 56 |  | neeq1 | ⊢ ( 𝑌  =  - 1  →  ( 𝑌  ≠  - 1  ↔  - 1  ≠  - 1 ) ) | 
						
							| 57 |  | oveq2 | ⊢ ( 𝑌  =  - 1  →  ( - 1  ·  𝑌 )  =  ( - 1  ·  - 1 ) ) | 
						
							| 58 | 57 | breq1d | ⊢ ( 𝑌  =  - 1  →  ( ( - 1  ·  𝑌 )  <  0  ↔  ( - 1  ·  - 1 )  <  0 ) ) | 
						
							| 59 | 56 58 | bibi12d | ⊢ ( 𝑌  =  - 1  →  ( ( 𝑌  ≠  - 1  ↔  ( - 1  ·  𝑌 )  <  0 )  ↔  ( - 1  ≠  - 1  ↔  ( - 1  ·  - 1 )  <  0 ) ) ) | 
						
							| 60 | 55 59 | mpbiri | ⊢ ( 𝑌  =  - 1  →  ( 𝑌  ≠  - 1  ↔  ( - 1  ·  𝑌 )  <  0 ) ) | 
						
							| 61 | 60 | adantl | ⊢ ( ( 𝑌  ∈  { - 1 ,  1 }  ∧  𝑌  =  - 1 )  →  ( 𝑌  ≠  - 1  ↔  ( - 1  ·  𝑌 )  <  0 ) ) | 
						
							| 62 |  | neg1rr | ⊢ - 1  ∈  ℝ | 
						
							| 63 |  | neg1lt0 | ⊢ - 1  <  0 | 
						
							| 64 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 65 | 62 18 49 | lttri | ⊢ ( ( - 1  <  0  ∧  0  <  1 )  →  - 1  <  1 ) | 
						
							| 66 | 63 64 65 | mp2an | ⊢ - 1  <  1 | 
						
							| 67 | 62 66 | gtneii | ⊢ 1  ≠  - 1 | 
						
							| 68 | 22 | mulridi | ⊢ ( - 1  ·  1 )  =  - 1 | 
						
							| 69 | 68 63 | eqbrtri | ⊢ ( - 1  ·  1 )  <  0 | 
						
							| 70 | 67 69 | 2th | ⊢ ( 1  ≠  - 1  ↔  ( - 1  ·  1 )  <  0 ) | 
						
							| 71 |  | neeq1 | ⊢ ( 𝑌  =  1  →  ( 𝑌  ≠  - 1  ↔  1  ≠  - 1 ) ) | 
						
							| 72 |  | oveq2 | ⊢ ( 𝑌  =  1  →  ( - 1  ·  𝑌 )  =  ( - 1  ·  1 ) ) | 
						
							| 73 | 72 | breq1d | ⊢ ( 𝑌  =  1  →  ( ( - 1  ·  𝑌 )  <  0  ↔  ( - 1  ·  1 )  <  0 ) ) | 
						
							| 74 | 71 73 | bibi12d | ⊢ ( 𝑌  =  1  →  ( ( 𝑌  ≠  - 1  ↔  ( - 1  ·  𝑌 )  <  0 )  ↔  ( 1  ≠  - 1  ↔  ( - 1  ·  1 )  <  0 ) ) ) | 
						
							| 75 | 70 74 | mpbiri | ⊢ ( 𝑌  =  1  →  ( 𝑌  ≠  - 1  ↔  ( - 1  ·  𝑌 )  <  0 ) ) | 
						
							| 76 | 75 | adantl | ⊢ ( ( 𝑌  ∈  { - 1 ,  1 }  ∧  𝑌  =  1 )  →  ( 𝑌  ≠  - 1  ↔  ( - 1  ·  𝑌 )  <  0 ) ) | 
						
							| 77 |  | elpri | ⊢ ( 𝑌  ∈  { - 1 ,  1 }  →  ( 𝑌  =  - 1  ∨  𝑌  =  1 ) ) | 
						
							| 78 | 61 76 77 | mpjaodan | ⊢ ( 𝑌  ∈  { - 1 ,  1 }  →  ( 𝑌  ≠  - 1  ↔  ( - 1  ·  𝑌 )  <  0 ) ) | 
						
							| 79 | 78 | adantr | ⊢ ( ( 𝑌  ∈  { - 1 ,  1 }  ∧  𝑋  =  - 1 )  →  ( 𝑌  ≠  - 1  ↔  ( - 1  ·  𝑌 )  <  0 ) ) | 
						
							| 80 |  | neeq2 | ⊢ ( 𝑋  =  - 1  →  ( 𝑌  ≠  𝑋  ↔  𝑌  ≠  - 1 ) ) | 
						
							| 81 |  | oveq1 | ⊢ ( 𝑋  =  - 1  →  ( 𝑋  ·  𝑌 )  =  ( - 1  ·  𝑌 ) ) | 
						
							| 82 | 81 | breq1d | ⊢ ( 𝑋  =  - 1  →  ( ( 𝑋  ·  𝑌 )  <  0  ↔  ( - 1  ·  𝑌 )  <  0 ) ) | 
						
							| 83 | 80 82 | bibi12d | ⊢ ( 𝑋  =  - 1  →  ( ( 𝑌  ≠  𝑋  ↔  ( 𝑋  ·  𝑌 )  <  0 )  ↔  ( 𝑌  ≠  - 1  ↔  ( - 1  ·  𝑌 )  <  0 ) ) ) | 
						
							| 84 | 83 | adantl | ⊢ ( ( 𝑌  ∈  { - 1 ,  1 }  ∧  𝑋  =  - 1 )  →  ( ( 𝑌  ≠  𝑋  ↔  ( 𝑋  ·  𝑌 )  <  0 )  ↔  ( 𝑌  ≠  - 1  ↔  ( - 1  ·  𝑌 )  <  0 ) ) ) | 
						
							| 85 | 79 84 | mpbird | ⊢ ( ( 𝑌  ∈  { - 1 ,  1 }  ∧  𝑋  =  - 1 )  →  ( 𝑌  ≠  𝑋  ↔  ( 𝑋  ·  𝑌 )  <  0 ) ) | 
						
							| 86 | 46 85 | sylan | ⊢ ( ( ( ( 𝑋  ∈  { - 1 ,  1 }  ∧  𝑌  ∈  { - 1 ,  0 ,  1 } )  ∧  ¬  𝑌  =  0 )  ∧  𝑋  =  - 1 )  →  ( 𝑌  ≠  𝑋  ↔  ( 𝑋  ·  𝑌 )  <  0 ) ) | 
						
							| 87 | 67 | necomi | ⊢ - 1  ≠  1 | 
						
							| 88 | 22 23 | mulcomi | ⊢ ( - 1  ·  1 )  =  ( 1  ·  - 1 ) | 
						
							| 89 | 88 | breq1i | ⊢ ( ( - 1  ·  1 )  <  0  ↔  ( 1  ·  - 1 )  <  0 ) | 
						
							| 90 | 69 89 | mpbi | ⊢ ( 1  ·  - 1 )  <  0 | 
						
							| 91 | 87 90 | 2th | ⊢ ( - 1  ≠  1  ↔  ( 1  ·  - 1 )  <  0 ) | 
						
							| 92 |  | neeq1 | ⊢ ( 𝑌  =  - 1  →  ( 𝑌  ≠  1  ↔  - 1  ≠  1 ) ) | 
						
							| 93 |  | oveq2 | ⊢ ( 𝑌  =  - 1  →  ( 1  ·  𝑌 )  =  ( 1  ·  - 1 ) ) | 
						
							| 94 | 93 | breq1d | ⊢ ( 𝑌  =  - 1  →  ( ( 1  ·  𝑌 )  <  0  ↔  ( 1  ·  - 1 )  <  0 ) ) | 
						
							| 95 | 92 94 | bibi12d | ⊢ ( 𝑌  =  - 1  →  ( ( 𝑌  ≠  1  ↔  ( 1  ·  𝑌 )  <  0 )  ↔  ( - 1  ≠  1  ↔  ( 1  ·  - 1 )  <  0 ) ) ) | 
						
							| 96 | 91 95 | mpbiri | ⊢ ( 𝑌  =  - 1  →  ( 𝑌  ≠  1  ↔  ( 1  ·  𝑌 )  <  0 ) ) | 
						
							| 97 | 96 | adantl | ⊢ ( ( 𝑌  ∈  { - 1 ,  1 }  ∧  𝑌  =  - 1 )  →  ( 𝑌  ≠  1  ↔  ( 1  ·  𝑌 )  <  0 ) ) | 
						
							| 98 |  | neirr | ⊢ ¬  1  ≠  1 | 
						
							| 99 | 23 | mulridi | ⊢ ( 1  ·  1 )  =  1 | 
						
							| 100 | 99 | breq1i | ⊢ ( ( 1  ·  1 )  <  0  ↔  1  <  0 ) | 
						
							| 101 | 51 100 | mtbir | ⊢ ¬  ( 1  ·  1 )  <  0 | 
						
							| 102 | 98 101 | 2false | ⊢ ( 1  ≠  1  ↔  ( 1  ·  1 )  <  0 ) | 
						
							| 103 |  | neeq1 | ⊢ ( 𝑌  =  1  →  ( 𝑌  ≠  1  ↔  1  ≠  1 ) ) | 
						
							| 104 |  | oveq2 | ⊢ ( 𝑌  =  1  →  ( 1  ·  𝑌 )  =  ( 1  ·  1 ) ) | 
						
							| 105 | 104 | breq1d | ⊢ ( 𝑌  =  1  →  ( ( 1  ·  𝑌 )  <  0  ↔  ( 1  ·  1 )  <  0 ) ) | 
						
							| 106 | 103 105 | bibi12d | ⊢ ( 𝑌  =  1  →  ( ( 𝑌  ≠  1  ↔  ( 1  ·  𝑌 )  <  0 )  ↔  ( 1  ≠  1  ↔  ( 1  ·  1 )  <  0 ) ) ) | 
						
							| 107 | 102 106 | mpbiri | ⊢ ( 𝑌  =  1  →  ( 𝑌  ≠  1  ↔  ( 1  ·  𝑌 )  <  0 ) ) | 
						
							| 108 | 107 | adantl | ⊢ ( ( 𝑌  ∈  { - 1 ,  1 }  ∧  𝑌  =  1 )  →  ( 𝑌  ≠  1  ↔  ( 1  ·  𝑌 )  <  0 ) ) | 
						
							| 109 | 97 108 77 | mpjaodan | ⊢ ( 𝑌  ∈  { - 1 ,  1 }  →  ( 𝑌  ≠  1  ↔  ( 1  ·  𝑌 )  <  0 ) ) | 
						
							| 110 | 109 | adantr | ⊢ ( ( 𝑌  ∈  { - 1 ,  1 }  ∧  𝑋  =  1 )  →  ( 𝑌  ≠  1  ↔  ( 1  ·  𝑌 )  <  0 ) ) | 
						
							| 111 |  | neeq2 | ⊢ ( 𝑋  =  1  →  ( 𝑌  ≠  𝑋  ↔  𝑌  ≠  1 ) ) | 
						
							| 112 |  | oveq1 | ⊢ ( 𝑋  =  1  →  ( 𝑋  ·  𝑌 )  =  ( 1  ·  𝑌 ) ) | 
						
							| 113 | 112 | breq1d | ⊢ ( 𝑋  =  1  →  ( ( 𝑋  ·  𝑌 )  <  0  ↔  ( 1  ·  𝑌 )  <  0 ) ) | 
						
							| 114 | 111 113 | bibi12d | ⊢ ( 𝑋  =  1  →  ( ( 𝑌  ≠  𝑋  ↔  ( 𝑋  ·  𝑌 )  <  0 )  ↔  ( 𝑌  ≠  1  ↔  ( 1  ·  𝑌 )  <  0 ) ) ) | 
						
							| 115 | 114 | adantl | ⊢ ( ( 𝑌  ∈  { - 1 ,  1 }  ∧  𝑋  =  1 )  →  ( ( 𝑌  ≠  𝑋  ↔  ( 𝑋  ·  𝑌 )  <  0 )  ↔  ( 𝑌  ≠  1  ↔  ( 1  ·  𝑌 )  <  0 ) ) ) | 
						
							| 116 | 110 115 | mpbird | ⊢ ( ( 𝑌  ∈  { - 1 ,  1 }  ∧  𝑋  =  1 )  →  ( 𝑌  ≠  𝑋  ↔  ( 𝑋  ·  𝑌 )  <  0 ) ) | 
						
							| 117 | 46 116 | sylan | ⊢ ( ( ( ( 𝑋  ∈  { - 1 ,  1 }  ∧  𝑌  ∈  { - 1 ,  0 ,  1 } )  ∧  ¬  𝑌  =  0 )  ∧  𝑋  =  1 )  →  ( 𝑌  ≠  𝑋  ↔  ( 𝑋  ·  𝑌 )  <  0 ) ) | 
						
							| 118 |  | elpri | ⊢ ( 𝑋  ∈  { - 1 ,  1 }  →  ( 𝑋  =  - 1  ∨  𝑋  =  1 ) ) | 
						
							| 119 | 118 | ad2antrr | ⊢ ( ( ( 𝑋  ∈  { - 1 ,  1 }  ∧  𝑌  ∈  { - 1 ,  0 ,  1 } )  ∧  ¬  𝑌  =  0 )  →  ( 𝑋  =  - 1  ∨  𝑋  =  1 ) ) | 
						
							| 120 | 86 117 119 | mpjaodan | ⊢ ( ( ( 𝑋  ∈  { - 1 ,  1 }  ∧  𝑌  ∈  { - 1 ,  0 ,  1 } )  ∧  ¬  𝑌  =  0 )  →  ( 𝑌  ≠  𝑋  ↔  ( 𝑋  ·  𝑌 )  <  0 ) ) | 
						
							| 121 | 13 15 32 120 | ifbothda | ⊢ ( ( 𝑋  ∈  { - 1 ,  1 }  ∧  𝑌  ∈  { - 1 ,  0 ,  1 } )  →  ( if ( 𝑌  =  0 ,  𝑋 ,  𝑌 )  ≠  𝑋  ↔  ( 𝑋  ·  𝑌 )  <  0 ) ) | 
						
							| 122 | 11 121 | bitrd | ⊢ ( ( 𝑋  ∈  { - 1 ,  1 }  ∧  𝑌  ∈  { - 1 ,  0 ,  1 } )  →  ( ( 𝑋  ⨣  𝑌 )  ≠  𝑋  ↔  ( 𝑋  ·  𝑌 )  <  0 ) ) |