Metamath Proof Explorer


Theorem signswch

Description: The zero-skipping operation changes value when the operands change signs. (Contributed by Thierry Arnoux, 9-Oct-2018)

Ref Expression
Hypotheses signsw.p ˙=a101,b101ifb=0ab
signsw.w W=Basendx101+ndx˙
Assertion signswch X11Y101X˙YXXY<0

Proof

Step Hyp Ref Expression
1 signsw.p ˙=a101,b101ifb=0ab
2 signsw.w W=Basendx101+ndx˙
3 df-pr 11=11
4 snsstp1 1101
5 snsstp3 1101
6 4 5 unssi 11101
7 3 6 eqsstri 11101
8 7 sseli X11X101
9 1 signspval X101Y101X˙Y=ifY=0XY
10 8 9 sylan X11Y101X˙Y=ifY=0XY
11 10 neeq1d X11Y101X˙YXifY=0XYX
12 neeq1 X=ifY=0XYXXifY=0XYX
13 12 bibi1d X=ifY=0XYXXXY<0ifY=0XYXXY<0
14 neeq1 Y=ifY=0XYYXifY=0XYX
15 14 bibi1d Y=ifY=0XYYXXY<0ifY=0XYXXY<0
16 neirr ¬XX
17 16 a1i X11Y101Y=0¬XX
18 0re 0
19 18 ltnri ¬0<0
20 simpr X11Y101Y=0Y=0
21 20 oveq2d X11Y101Y=0XY=X0
22 neg1cn 1
23 ax-1cn 1
24 prssi 1111
25 22 23 24 mp2an 11
26 simpll X11Y101Y=0X11
27 25 26 sselid X11Y101Y=0X
28 27 mul01d X11Y101Y=0X0=0
29 21 28 eqtrd X11Y101Y=0XY=0
30 29 breq1d X11Y101Y=0XY<00<0
31 19 30 mtbiri X11Y101Y=0¬XY<0
32 17 31 2falsed X11Y101Y=0XXXY<0
33 simplr X11Y101¬Y=0Y101
34 tpcomb 101=110
35 33 34 eleqtrdi X11Y101¬Y=0Y110
36 simpr X11Y101¬Y=0¬Y=0
37 36 neqned X11Y101¬Y=0Y0
38 35 37 jca X11Y101¬Y=0Y110Y0
39 eldifsn Y1100Y110Y0
40 neg1ne0 10
41 ax-1ne0 10
42 diftpsn3 10101100=11
43 40 41 42 mp2an 1100=11
44 43 eleq2i Y1100Y11
45 39 44 bitr3i Y110Y0Y11
46 38 45 sylib X11Y101¬Y=0Y11
47 neirr ¬11
48 0le1 01
49 1re 1
50 18 49 lenlti 01¬1<0
51 48 50 mpbi ¬1<0
52 neg1mulneg1e1 -1-1=1
53 52 breq1i -1-1<01<0
54 51 53 mtbir ¬-1-1<0
55 47 54 2false 11-1-1<0
56 neeq1 Y=1Y111
57 oveq2 Y=1-1Y=-1-1
58 57 breq1d Y=1-1Y<0-1-1<0
59 56 58 bibi12d Y=1Y1-1Y<011-1-1<0
60 55 59 mpbiri Y=1Y1-1Y<0
61 60 adantl Y11Y=1Y1-1Y<0
62 neg1rr 1
63 neg1lt0 1<0
64 0lt1 0<1
65 62 18 49 lttri 1<00<11<1
66 63 64 65 mp2an 1<1
67 62 66 gtneii 11
68 22 mulridi -11=1
69 68 63 eqbrtri -11<0
70 67 69 2th 11-11<0
71 neeq1 Y=1Y111
72 oveq2 Y=1-1Y=-11
73 72 breq1d Y=1-1Y<0-11<0
74 71 73 bibi12d Y=1Y1-1Y<011-11<0
75 70 74 mpbiri Y=1Y1-1Y<0
76 75 adantl Y11Y=1Y1-1Y<0
77 elpri Y11Y=1Y=1
78 61 76 77 mpjaodan Y11Y1-1Y<0
79 78 adantr Y11X=1Y1-1Y<0
80 neeq2 X=1YXY1
81 oveq1 X=1XY=-1Y
82 81 breq1d X=1XY<0-1Y<0
83 80 82 bibi12d X=1YXXY<0Y1-1Y<0
84 83 adantl Y11X=1YXXY<0Y1-1Y<0
85 79 84 mpbird Y11X=1YXXY<0
86 46 85 sylan X11Y101¬Y=0X=1YXXY<0
87 67 necomi 11
88 22 23 mulcomi -11=1-1
89 88 breq1i -11<01-1<0
90 69 89 mpbi 1-1<0
91 87 90 2th 111-1<0
92 neeq1 Y=1Y111
93 oveq2 Y=11Y=1-1
94 93 breq1d Y=11Y<01-1<0
95 92 94 bibi12d Y=1Y11Y<0111-1<0
96 91 95 mpbiri Y=1Y11Y<0
97 96 adantl Y11Y=1Y11Y<0
98 neirr ¬11
99 23 mulridi 11=1
100 99 breq1i 11<01<0
101 51 100 mtbir ¬11<0
102 98 101 2false 1111<0
103 neeq1 Y=1Y111
104 oveq2 Y=11Y=11
105 104 breq1d Y=11Y<011<0
106 103 105 bibi12d Y=1Y11Y<01111<0
107 102 106 mpbiri Y=1Y11Y<0
108 107 adantl Y11Y=1Y11Y<0
109 97 108 77 mpjaodan Y11Y11Y<0
110 109 adantr Y11X=1Y11Y<0
111 neeq2 X=1YXY1
112 oveq1 X=1XY=1Y
113 112 breq1d X=1XY<01Y<0
114 111 113 bibi12d X=1YXXY<0Y11Y<0
115 114 adantl Y11X=1YXXY<0Y11Y<0
116 110 115 mpbird Y11X=1YXXY<0
117 46 116 sylan X11Y101¬Y=0X=1YXXY<0
118 elpri X11X=1X=1
119 118 ad2antrr X11Y101¬Y=0X=1X=1
120 86 117 119 mpjaodan X11Y101¬Y=0YXXY<0
121 13 15 32 120 ifbothda X11Y101ifY=0XYXXY<0
122 11 121 bitrd X11Y101X˙YXXY<0