| Step | Hyp | Ref | Expression | 
						
							| 1 |  | signsw.p | ⊢  ⨣   =  ( 𝑎  ∈  { - 1 ,  0 ,  1 } ,  𝑏  ∈  { - 1 ,  0 ,  1 }  ↦  if ( 𝑏  =  0 ,  𝑎 ,  𝑏 ) ) | 
						
							| 2 |  | signsw.w | ⊢ 𝑊  =  { 〈 ( Base ‘ ndx ) ,  { - 1 ,  0 ,  1 } 〉 ,  〈 ( +g ‘ ndx ) ,   ⨣  〉 } | 
						
							| 3 | 1 | signspval | ⊢ ( ( 𝑋  ∈  { - 1 ,  0 ,  1 }  ∧  𝑌  ∈  { - 1 ,  0 ,  1 } )  →  ( 𝑋  ⨣  𝑌 )  =  if ( 𝑌  =  0 ,  𝑋 ,  𝑌 ) ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( ( 𝑋  ∈  { - 1 ,  0 ,  1 }  ∧  𝑌  ∈  { - 1 ,  0 ,  1 } )  ∧  𝑋  ≠  0 )  →  ( 𝑋  ⨣  𝑌 )  =  if ( 𝑌  =  0 ,  𝑋 ,  𝑌 ) ) | 
						
							| 5 |  | neeq1 | ⊢ ( 𝑋  =  if ( 𝑌  =  0 ,  𝑋 ,  𝑌 )  →  ( 𝑋  ≠  0  ↔  if ( 𝑌  =  0 ,  𝑋 ,  𝑌 )  ≠  0 ) ) | 
						
							| 6 |  | neeq1 | ⊢ ( 𝑌  =  if ( 𝑌  =  0 ,  𝑋 ,  𝑌 )  →  ( 𝑌  ≠  0  ↔  if ( 𝑌  =  0 ,  𝑋 ,  𝑌 )  ≠  0 ) ) | 
						
							| 7 |  | simplr | ⊢ ( ( ( ( 𝑋  ∈  { - 1 ,  0 ,  1 }  ∧  𝑌  ∈  { - 1 ,  0 ,  1 } )  ∧  𝑋  ≠  0 )  ∧  𝑌  =  0 )  →  𝑋  ≠  0 ) | 
						
							| 8 |  | simpr | ⊢ ( ( ( ( 𝑋  ∈  { - 1 ,  0 ,  1 }  ∧  𝑌  ∈  { - 1 ,  0 ,  1 } )  ∧  𝑋  ≠  0 )  ∧  ¬  𝑌  =  0 )  →  ¬  𝑌  =  0 ) | 
						
							| 9 | 8 | neqned | ⊢ ( ( ( ( 𝑋  ∈  { - 1 ,  0 ,  1 }  ∧  𝑌  ∈  { - 1 ,  0 ,  1 } )  ∧  𝑋  ≠  0 )  ∧  ¬  𝑌  =  0 )  →  𝑌  ≠  0 ) | 
						
							| 10 | 5 6 7 9 | ifbothda | ⊢ ( ( ( 𝑋  ∈  { - 1 ,  0 ,  1 }  ∧  𝑌  ∈  { - 1 ,  0 ,  1 } )  ∧  𝑋  ≠  0 )  →  if ( 𝑌  =  0 ,  𝑋 ,  𝑌 )  ≠  0 ) | 
						
							| 11 | 4 10 | eqnetrd | ⊢ ( ( ( 𝑋  ∈  { - 1 ,  0 ,  1 }  ∧  𝑌  ∈  { - 1 ,  0 ,  1 } )  ∧  𝑋  ≠  0 )  →  ( 𝑋  ⨣  𝑌 )  ≠  0 ) |