Step |
Hyp |
Ref |
Expression |
1 |
|
signsw.p |
⊢ ⨣ = ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } ↦ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) ) |
2 |
|
signsw.w |
⊢ 𝑊 = { 〈 ( Base ‘ ndx ) , { - 1 , 0 , 1 } 〉 , 〈 ( +g ‘ ndx ) , ⨣ 〉 } |
3 |
1
|
signspval |
⊢ ( ( 𝑋 ∈ { - 1 , 0 , 1 } ∧ 𝑌 ∈ { - 1 , 0 , 1 } ) → ( 𝑋 ⨣ 𝑌 ) = if ( 𝑌 = 0 , 𝑋 , 𝑌 ) ) |
4 |
3
|
adantr |
⊢ ( ( ( 𝑋 ∈ { - 1 , 0 , 1 } ∧ 𝑌 ∈ { - 1 , 0 , 1 } ) ∧ 𝑋 ≠ 0 ) → ( 𝑋 ⨣ 𝑌 ) = if ( 𝑌 = 0 , 𝑋 , 𝑌 ) ) |
5 |
|
neeq1 |
⊢ ( 𝑋 = if ( 𝑌 = 0 , 𝑋 , 𝑌 ) → ( 𝑋 ≠ 0 ↔ if ( 𝑌 = 0 , 𝑋 , 𝑌 ) ≠ 0 ) ) |
6 |
|
neeq1 |
⊢ ( 𝑌 = if ( 𝑌 = 0 , 𝑋 , 𝑌 ) → ( 𝑌 ≠ 0 ↔ if ( 𝑌 = 0 , 𝑋 , 𝑌 ) ≠ 0 ) ) |
7 |
|
simplr |
⊢ ( ( ( ( 𝑋 ∈ { - 1 , 0 , 1 } ∧ 𝑌 ∈ { - 1 , 0 , 1 } ) ∧ 𝑋 ≠ 0 ) ∧ 𝑌 = 0 ) → 𝑋 ≠ 0 ) |
8 |
|
simpr |
⊢ ( ( ( ( 𝑋 ∈ { - 1 , 0 , 1 } ∧ 𝑌 ∈ { - 1 , 0 , 1 } ) ∧ 𝑋 ≠ 0 ) ∧ ¬ 𝑌 = 0 ) → ¬ 𝑌 = 0 ) |
9 |
8
|
neqned |
⊢ ( ( ( ( 𝑋 ∈ { - 1 , 0 , 1 } ∧ 𝑌 ∈ { - 1 , 0 , 1 } ) ∧ 𝑋 ≠ 0 ) ∧ ¬ 𝑌 = 0 ) → 𝑌 ≠ 0 ) |
10 |
5 6 7 9
|
ifbothda |
⊢ ( ( ( 𝑋 ∈ { - 1 , 0 , 1 } ∧ 𝑌 ∈ { - 1 , 0 , 1 } ) ∧ 𝑋 ≠ 0 ) → if ( 𝑌 = 0 , 𝑋 , 𝑌 ) ≠ 0 ) |
11 |
4 10
|
eqnetrd |
⊢ ( ( ( 𝑋 ∈ { - 1 , 0 , 1 } ∧ 𝑌 ∈ { - 1 , 0 , 1 } ) ∧ 𝑋 ≠ 0 ) → ( 𝑋 ⨣ 𝑌 ) ≠ 0 ) |