Metamath Proof Explorer


Theorem signswn0

Description: The zero-skipping operation propagages nonzeros. (Contributed by Thierry Arnoux, 11-Oct-2018)

Ref Expression
Hypotheses signsw.p = ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } ↦ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) )
signsw.w 𝑊 = { ⟨ ( Base ‘ ndx ) , { - 1 , 0 , 1 } ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ }
Assertion signswn0 ( ( ( 𝑋 ∈ { - 1 , 0 , 1 } ∧ 𝑌 ∈ { - 1 , 0 , 1 } ) ∧ 𝑋 ≠ 0 ) → ( 𝑋 𝑌 ) ≠ 0 )

Proof

Step Hyp Ref Expression
1 signsw.p = ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } ↦ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) )
2 signsw.w 𝑊 = { ⟨ ( Base ‘ ndx ) , { - 1 , 0 , 1 } ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ }
3 1 signspval ( ( 𝑋 ∈ { - 1 , 0 , 1 } ∧ 𝑌 ∈ { - 1 , 0 , 1 } ) → ( 𝑋 𝑌 ) = if ( 𝑌 = 0 , 𝑋 , 𝑌 ) )
4 3 adantr ( ( ( 𝑋 ∈ { - 1 , 0 , 1 } ∧ 𝑌 ∈ { - 1 , 0 , 1 } ) ∧ 𝑋 ≠ 0 ) → ( 𝑋 𝑌 ) = if ( 𝑌 = 0 , 𝑋 , 𝑌 ) )
5 neeq1 ( 𝑋 = if ( 𝑌 = 0 , 𝑋 , 𝑌 ) → ( 𝑋 ≠ 0 ↔ if ( 𝑌 = 0 , 𝑋 , 𝑌 ) ≠ 0 ) )
6 neeq1 ( 𝑌 = if ( 𝑌 = 0 , 𝑋 , 𝑌 ) → ( 𝑌 ≠ 0 ↔ if ( 𝑌 = 0 , 𝑋 , 𝑌 ) ≠ 0 ) )
7 simplr ( ( ( ( 𝑋 ∈ { - 1 , 0 , 1 } ∧ 𝑌 ∈ { - 1 , 0 , 1 } ) ∧ 𝑋 ≠ 0 ) ∧ 𝑌 = 0 ) → 𝑋 ≠ 0 )
8 simpr ( ( ( ( 𝑋 ∈ { - 1 , 0 , 1 } ∧ 𝑌 ∈ { - 1 , 0 , 1 } ) ∧ 𝑋 ≠ 0 ) ∧ ¬ 𝑌 = 0 ) → ¬ 𝑌 = 0 )
9 8 neqned ( ( ( ( 𝑋 ∈ { - 1 , 0 , 1 } ∧ 𝑌 ∈ { - 1 , 0 , 1 } ) ∧ 𝑋 ≠ 0 ) ∧ ¬ 𝑌 = 0 ) → 𝑌 ≠ 0 )
10 5 6 7 9 ifbothda ( ( ( 𝑋 ∈ { - 1 , 0 , 1 } ∧ 𝑌 ∈ { - 1 , 0 , 1 } ) ∧ 𝑋 ≠ 0 ) → if ( 𝑌 = 0 , 𝑋 , 𝑌 ) ≠ 0 )
11 4 10 eqnetrd ( ( ( 𝑋 ∈ { - 1 , 0 , 1 } ∧ 𝑌 ∈ { - 1 , 0 , 1 } ) ∧ 𝑋 ≠ 0 ) → ( 𝑋 𝑌 ) ≠ 0 )