Metamath Proof Explorer


Theorem signswn0

Description: The zero-skipping operation propagages nonzeros. (Contributed by Thierry Arnoux, 11-Oct-2018)

Ref Expression
Hypotheses signsw.p ˙=a101,b101ifb=0ab
signsw.w W=Basendx101+ndx˙
Assertion signswn0 X101Y101X0X˙Y0

Proof

Step Hyp Ref Expression
1 signsw.p ˙=a101,b101ifb=0ab
2 signsw.w W=Basendx101+ndx˙
3 1 signspval X101Y101X˙Y=ifY=0XY
4 3 adantr X101Y101X0X˙Y=ifY=0XY
5 neeq1 X=ifY=0XYX0ifY=0XY0
6 neeq1 Y=ifY=0XYY0ifY=0XY0
7 simplr X101Y101X0Y=0X0
8 simpr X101Y101X0¬Y=0¬Y=0
9 8 neqned X101Y101X0¬Y=0Y0
10 5 6 7 9 ifbothda X101Y101X0ifY=0XY0
11 4 10 eqnetrd X101Y101X0X˙Y0