Step |
Hyp |
Ref |
Expression |
1 |
|
signsw.p |
|- .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) ) |
2 |
|
signsw.w |
|- W = { <. ( Base ` ndx ) , { -u 1 , 0 , 1 } >. , <. ( +g ` ndx ) , .+^ >. } |
3 |
|
c0ex |
|- 0 e. _V |
4 |
3
|
tpid2 |
|- 0 e. { -u 1 , 0 , 1 } |
5 |
1
|
signspval |
|- ( ( X e. { -u 1 , 0 , 1 } /\ 0 e. { -u 1 , 0 , 1 } ) -> ( X .+^ 0 ) = if ( 0 = 0 , X , 0 ) ) |
6 |
4 5
|
mpan2 |
|- ( X e. { -u 1 , 0 , 1 } -> ( X .+^ 0 ) = if ( 0 = 0 , X , 0 ) ) |
7 |
|
eqid |
|- 0 = 0 |
8 |
|
iftrue |
|- ( 0 = 0 -> if ( 0 = 0 , X , 0 ) = X ) |
9 |
7 8
|
mp1i |
|- ( X e. { -u 1 , 0 , 1 } -> if ( 0 = 0 , X , 0 ) = X ) |
10 |
6 9
|
eqtrd |
|- ( X e. { -u 1 , 0 , 1 } -> ( X .+^ 0 ) = X ) |