| Step | Hyp | Ref | Expression | 
						
							| 1 |  | signsw.p |  |-  .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) ) | 
						
							| 2 |  | signsw.w |  |-  W = { <. ( Base ` ndx ) , { -u 1 , 0 , 1 } >. , <. ( +g ` ndx ) , .+^ >. } | 
						
							| 3 |  | c0ex |  |-  0 e. _V | 
						
							| 4 | 3 | tpid2 |  |-  0 e. { -u 1 , 0 , 1 } | 
						
							| 5 | 1 | signspval |  |-  ( ( X e. { -u 1 , 0 , 1 } /\ 0 e. { -u 1 , 0 , 1 } ) -> ( X .+^ 0 ) = if ( 0 = 0 , X , 0 ) ) | 
						
							| 6 | 4 5 | mpan2 |  |-  ( X e. { -u 1 , 0 , 1 } -> ( X .+^ 0 ) = if ( 0 = 0 , X , 0 ) ) | 
						
							| 7 |  | eqid |  |-  0 = 0 | 
						
							| 8 |  | iftrue |  |-  ( 0 = 0 -> if ( 0 = 0 , X , 0 ) = X ) | 
						
							| 9 | 7 8 | mp1i |  |-  ( X e. { -u 1 , 0 , 1 } -> if ( 0 = 0 , X , 0 ) = X ) | 
						
							| 10 | 6 9 | eqtrd |  |-  ( X e. { -u 1 , 0 , 1 } -> ( X .+^ 0 ) = X ) |