Metamath Proof Explorer


Theorem signswrid

Description: The zero-skipping operation propagages nonzeros. (Contributed by Thierry Arnoux, 11-Oct-2018)

Ref Expression
Hypotheses signsw.p ˙=a101,b101ifb=0ab
signsw.w W=Basendx101+ndx˙
Assertion signswrid X101X˙0=X

Proof

Step Hyp Ref Expression
1 signsw.p ˙=a101,b101ifb=0ab
2 signsw.w W=Basendx101+ndx˙
3 c0ex 0V
4 3 tpid2 0101
5 1 signspval X1010101X˙0=if0=0X0
6 4 5 mpan2 X101X˙0=if0=0X0
7 eqid 0=0
8 iftrue 0=0if0=0X0=X
9 7 8 mp1i X101if0=0X0=X
10 6 9 eqtrd X101X˙0=X