Metamath Proof Explorer


Theorem signswrid

Description: The zero-skipping operation propagages nonzeros. (Contributed by Thierry Arnoux, 11-Oct-2018)

Ref Expression
Hypotheses signsw.p ˙ = a 1 0 1 , b 1 0 1 if b = 0 a b
signsw.w W = Base ndx 1 0 1 + ndx ˙
Assertion signswrid X 1 0 1 X ˙ 0 = X

Proof

Step Hyp Ref Expression
1 signsw.p ˙ = a 1 0 1 , b 1 0 1 if b = 0 a b
2 signsw.w W = Base ndx 1 0 1 + ndx ˙
3 c0ex 0 V
4 3 tpid2 0 1 0 1
5 1 signspval X 1 0 1 0 1 0 1 X ˙ 0 = if 0 = 0 X 0
6 4 5 mpan2 X 1 0 1 X ˙ 0 = if 0 = 0 X 0
7 eqid 0 = 0
8 iftrue 0 = 0 if 0 = 0 X 0 = X
9 7 8 mp1i X 1 0 1 if 0 = 0 X 0 = X
10 6 9 eqtrd X 1 0 1 X ˙ 0 = X