Description: The operation of W . (Contributed by Thierry Arnoux, 9-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | signsw.p | ⊢ ⨣ = ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } ↦ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) ) | |
| signsw.w | ⊢ 𝑊 = { 〈 ( Base ‘ ndx ) , { - 1 , 0 , 1 } 〉 , 〈 ( +g ‘ ndx ) , ⨣ 〉 } | ||
| Assertion | signswplusg | ⊢ ⨣ = ( +g ‘ 𝑊 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | signsw.p | ⊢ ⨣ = ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } ↦ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) ) | |
| 2 | signsw.w | ⊢ 𝑊 = { 〈 ( Base ‘ ndx ) , { - 1 , 0 , 1 } 〉 , 〈 ( +g ‘ ndx ) , ⨣ 〉 } | |
| 3 | tpex | ⊢ { - 1 , 0 , 1 } ∈ V | |
| 4 | 3 3 | mpoex | ⊢ ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } ↦ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) ) ∈ V | 
| 5 | 1 4 | eqeltri | ⊢ ⨣ ∈ V | 
| 6 | 2 | grpplusg | ⊢ ( ⨣ ∈ V → ⨣ = ( +g ‘ 𝑊 ) ) | 
| 7 | 5 6 | ax-mp | ⊢ ⨣ = ( +g ‘ 𝑊 ) |