Metamath Proof Explorer


Theorem signswplusg

Description: The operation of W . (Contributed by Thierry Arnoux, 9-Sep-2018)

Ref Expression
Hypotheses signsw.p ˙=a101,b101ifb=0ab
signsw.w W=Basendx101+ndx˙
Assertion signswplusg ˙=+W

Proof

Step Hyp Ref Expression
1 signsw.p ˙=a101,b101ifb=0ab
2 signsw.w W=Basendx101+ndx˙
3 tpex 101V
4 3 3 mpoex a101,b101ifb=0abV
5 1 4 eqeltri ˙V
6 2 grpplusg ˙V˙=+W
7 5 6 ax-mp ˙=+W