Database
SURREAL NUMBERS
Conway cut representation
Conway cuts
slerecd
Metamath Proof Explorer
Description: A comparison law for surreals considered as cuts of sets of surreals.
Definition from Conway p. 4. Theorem 4 of Alling p. 186. Theorem
2.5 of Gonshor p. 9. (Contributed by Scott Fenton , 5-Dec-2025)
Ref
Expression
Hypotheses
slerecd.1
⊢ ( 𝜑 → 𝐴 <<s 𝐵 )
slerecd.2
⊢ ( 𝜑 → 𝐶 <<s 𝐷 )
slerecd.3
⊢ ( 𝜑 → 𝑋 = ( 𝐴 |s 𝐵 ) )
slerecd.4
⊢ ( 𝜑 → 𝑌 = ( 𝐶 |s 𝐷 ) )
Assertion
slerecd
⊢ ( 𝜑 → ( 𝑋 ≤s 𝑌 ↔ ( ∀ 𝑑 ∈ 𝐷 𝑋 <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑌 ) ) )
Proof
Step
Hyp
Ref
Expression
1
slerecd.1
⊢ ( 𝜑 → 𝐴 <<s 𝐵 )
2
slerecd.2
⊢ ( 𝜑 → 𝐶 <<s 𝐷 )
3
slerecd.3
⊢ ( 𝜑 → 𝑋 = ( 𝐴 |s 𝐵 ) )
4
slerecd.4
⊢ ( 𝜑 → 𝑌 = ( 𝐶 |s 𝐷 ) )
5
slerec
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝑋 = ( 𝐴 |s 𝐵 ) ∧ 𝑌 = ( 𝐶 |s 𝐷 ) ) ) → ( 𝑋 ≤s 𝑌 ↔ ( ∀ 𝑑 ∈ 𝐷 𝑋 <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑌 ) ) )
6
1 2 3 4 5
syl22anc
⊢ ( 𝜑 → ( 𝑋 ≤s 𝑌 ↔ ( ∀ 𝑑 ∈ 𝐷 𝑋 <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑌 ) ) )