Metamath Proof Explorer


Theorem slerecd

Description: A comparison law for surreals considered as cuts of sets of surreals. Definition from Conway p. 4. Theorem 4 of Alling p. 186. Theorem 2.5 of Gonshor p. 9. (Contributed by Scott Fenton, 5-Dec-2025)

Ref Expression
Hypotheses slerecd.1 ( 𝜑𝐴 <<s 𝐵 )
slerecd.2 ( 𝜑𝐶 <<s 𝐷 )
slerecd.3 ( 𝜑𝑋 = ( 𝐴 |s 𝐵 ) )
slerecd.4 ( 𝜑𝑌 = ( 𝐶 |s 𝐷 ) )
Assertion slerecd ( 𝜑 → ( 𝑋 ≤s 𝑌 ↔ ( ∀ 𝑑𝐷 𝑋 <s 𝑑 ∧ ∀ 𝑎𝐴 𝑎 <s 𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 slerecd.1 ( 𝜑𝐴 <<s 𝐵 )
2 slerecd.2 ( 𝜑𝐶 <<s 𝐷 )
3 slerecd.3 ( 𝜑𝑋 = ( 𝐴 |s 𝐵 ) )
4 slerecd.4 ( 𝜑𝑌 = ( 𝐶 |s 𝐷 ) )
5 slerec ( ( ( 𝐴 <<s 𝐵𝐶 <<s 𝐷 ) ∧ ( 𝑋 = ( 𝐴 |s 𝐵 ) ∧ 𝑌 = ( 𝐶 |s 𝐷 ) ) ) → ( 𝑋 ≤s 𝑌 ↔ ( ∀ 𝑑𝐷 𝑋 <s 𝑑 ∧ ∀ 𝑎𝐴 𝑎 <s 𝑌 ) ) )
6 1 2 3 4 5 syl22anc ( 𝜑 → ( 𝑋 ≤s 𝑌 ↔ ( ∀ 𝑑𝐷 𝑋 <s 𝑑 ∧ ∀ 𝑎𝐴 𝑎 <s 𝑌 ) ) )