Step |
Hyp |
Ref |
Expression |
1 |
|
scutcl |
⊢ ( 𝐴 <<s 𝐵 → ( 𝐴 |s 𝐵 ) ∈ No ) |
2 |
1
|
ad3antrrr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) ∧ 𝑑 ∈ 𝐷 ) → ( 𝐴 |s 𝐵 ) ∈ No ) |
3 |
|
scutcl |
⊢ ( 𝐶 <<s 𝐷 → ( 𝐶 |s 𝐷 ) ∈ No ) |
4 |
3
|
ad3antlr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) ∧ 𝑑 ∈ 𝐷 ) → ( 𝐶 |s 𝐷 ) ∈ No ) |
5 |
|
ssltss2 |
⊢ ( 𝐶 <<s 𝐷 → 𝐷 ⊆ No ) |
6 |
5
|
ad2antlr |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) → 𝐷 ⊆ No ) |
7 |
6
|
sselda |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) ∧ 𝑑 ∈ 𝐷 ) → 𝑑 ∈ No ) |
8 |
|
simplr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) ∧ 𝑑 ∈ 𝐷 ) → ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) |
9 |
|
scutcut |
⊢ ( 𝐶 <<s 𝐷 → ( ( 𝐶 |s 𝐷 ) ∈ No ∧ 𝐶 <<s { ( 𝐶 |s 𝐷 ) } ∧ { ( 𝐶 |s 𝐷 ) } <<s 𝐷 ) ) |
10 |
9
|
simp3d |
⊢ ( 𝐶 <<s 𝐷 → { ( 𝐶 |s 𝐷 ) } <<s 𝐷 ) |
11 |
10
|
ad2antlr |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) → { ( 𝐶 |s 𝐷 ) } <<s 𝐷 ) |
12 |
|
ssltsep |
⊢ ( { ( 𝐶 |s 𝐷 ) } <<s 𝐷 → ∀ 𝑎 ∈ { ( 𝐶 |s 𝐷 ) } ∀ 𝑑 ∈ 𝐷 𝑎 <s 𝑑 ) |
13 |
11 12
|
syl |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) → ∀ 𝑎 ∈ { ( 𝐶 |s 𝐷 ) } ∀ 𝑑 ∈ 𝐷 𝑎 <s 𝑑 ) |
14 |
|
ovex |
⊢ ( 𝐶 |s 𝐷 ) ∈ V |
15 |
|
breq1 |
⊢ ( 𝑎 = ( 𝐶 |s 𝐷 ) → ( 𝑎 <s 𝑑 ↔ ( 𝐶 |s 𝐷 ) <s 𝑑 ) ) |
16 |
15
|
ralbidv |
⊢ ( 𝑎 = ( 𝐶 |s 𝐷 ) → ( ∀ 𝑑 ∈ 𝐷 𝑎 <s 𝑑 ↔ ∀ 𝑑 ∈ 𝐷 ( 𝐶 |s 𝐷 ) <s 𝑑 ) ) |
17 |
14 16
|
ralsn |
⊢ ( ∀ 𝑎 ∈ { ( 𝐶 |s 𝐷 ) } ∀ 𝑑 ∈ 𝐷 𝑎 <s 𝑑 ↔ ∀ 𝑑 ∈ 𝐷 ( 𝐶 |s 𝐷 ) <s 𝑑 ) |
18 |
13 17
|
sylib |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) → ∀ 𝑑 ∈ 𝐷 ( 𝐶 |s 𝐷 ) <s 𝑑 ) |
19 |
18
|
r19.21bi |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) ∧ 𝑑 ∈ 𝐷 ) → ( 𝐶 |s 𝐷 ) <s 𝑑 ) |
20 |
2 4 7 8 19
|
slelttrd |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) ∧ 𝑑 ∈ 𝐷 ) → ( 𝐴 |s 𝐵 ) <s 𝑑 ) |
21 |
20
|
ralrimiva |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) → ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ) |
22 |
|
ssltss1 |
⊢ ( 𝐴 <<s 𝐵 → 𝐴 ⊆ No ) |
23 |
22
|
adantr |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) → 𝐴 ⊆ No ) |
24 |
23
|
adantr |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) → 𝐴 ⊆ No ) |
25 |
24
|
sselda |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ∈ No ) |
26 |
1
|
ad3antrrr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝐴 |s 𝐵 ) ∈ No ) |
27 |
3
|
ad3antlr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝐶 |s 𝐷 ) ∈ No ) |
28 |
|
scutcut |
⊢ ( 𝐴 <<s 𝐵 → ( ( 𝐴 |s 𝐵 ) ∈ No ∧ 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) ) |
29 |
28
|
simp2d |
⊢ ( 𝐴 <<s 𝐵 → 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ) |
30 |
29
|
adantr |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) → 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ) |
31 |
30
|
adantr |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) → 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ) |
32 |
|
ssltsep |
⊢ ( 𝐴 <<s { ( 𝐴 |s 𝐵 ) } → ∀ 𝑎 ∈ 𝐴 ∀ 𝑑 ∈ { ( 𝐴 |s 𝐵 ) } 𝑎 <s 𝑑 ) |
33 |
31 32
|
syl |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) → ∀ 𝑎 ∈ 𝐴 ∀ 𝑑 ∈ { ( 𝐴 |s 𝐵 ) } 𝑎 <s 𝑑 ) |
34 |
33
|
r19.21bi |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) ∧ 𝑎 ∈ 𝐴 ) → ∀ 𝑑 ∈ { ( 𝐴 |s 𝐵 ) } 𝑎 <s 𝑑 ) |
35 |
|
ovex |
⊢ ( 𝐴 |s 𝐵 ) ∈ V |
36 |
|
breq2 |
⊢ ( 𝑑 = ( 𝐴 |s 𝐵 ) → ( 𝑎 <s 𝑑 ↔ 𝑎 <s ( 𝐴 |s 𝐵 ) ) ) |
37 |
35 36
|
ralsn |
⊢ ( ∀ 𝑑 ∈ { ( 𝐴 |s 𝐵 ) } 𝑎 <s 𝑑 ↔ 𝑎 <s ( 𝐴 |s 𝐵 ) ) |
38 |
34 37
|
sylib |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) ∧ 𝑎 ∈ 𝐴 ) → 𝑎 <s ( 𝐴 |s 𝐵 ) ) |
39 |
|
simplr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) |
40 |
25 26 27 38 39
|
sltletrd |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) ∧ 𝑎 ∈ 𝐴 ) → 𝑎 <s ( 𝐶 |s 𝐷 ) ) |
41 |
40
|
ralrimiva |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) → ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) |
42 |
21 41
|
jca |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) → ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) |
43 |
|
bdayelon |
⊢ ( bday ‘ ( 𝐴 |s 𝐵 ) ) ∈ On |
44 |
43
|
onordi |
⊢ Ord ( bday ‘ ( 𝐴 |s 𝐵 ) ) |
45 |
|
ordn2lp |
⊢ ( Ord ( bday ‘ ( 𝐴 |s 𝐵 ) ) → ¬ ( ( bday ‘ ( 𝐴 |s 𝐵 ) ) ∈ ( bday ‘ ( 𝐶 |s 𝐷 ) ) ∧ ( bday ‘ ( 𝐶 |s 𝐷 ) ) ∈ ( bday ‘ ( 𝐴 |s 𝐵 ) ) ) ) |
46 |
44 45
|
ax-mp |
⊢ ¬ ( ( bday ‘ ( 𝐴 |s 𝐵 ) ) ∈ ( bday ‘ ( 𝐶 |s 𝐷 ) ) ∧ ( bday ‘ ( 𝐶 |s 𝐷 ) ) ∈ ( bday ‘ ( 𝐴 |s 𝐵 ) ) ) |
47 |
3
|
ad2antlr |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) → ( 𝐶 |s 𝐷 ) ∈ No ) |
48 |
1
|
adantr |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) → ( 𝐴 |s 𝐵 ) ∈ No ) |
49 |
48
|
adantr |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) → ( 𝐴 |s 𝐵 ) ∈ No ) |
50 |
|
sltnle |
⊢ ( ( ( 𝐶 |s 𝐷 ) ∈ No ∧ ( 𝐴 |s 𝐵 ) ∈ No ) → ( ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ↔ ¬ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) ) |
51 |
47 49 50
|
syl2anc |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) → ( ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ↔ ¬ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) ) |
52 |
3
|
ad3antlr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → ( 𝐶 |s 𝐷 ) ∈ No ) |
53 |
|
ssltex1 |
⊢ ( 𝐴 <<s 𝐵 → 𝐴 ∈ V ) |
54 |
53
|
ad3antrrr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → 𝐴 ∈ V ) |
55 |
|
snex |
⊢ { ( 𝐶 |s 𝐷 ) } ∈ V |
56 |
54 55
|
jctir |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → ( 𝐴 ∈ V ∧ { ( 𝐶 |s 𝐷 ) } ∈ V ) ) |
57 |
22
|
ad3antrrr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → 𝐴 ⊆ No ) |
58 |
52
|
snssd |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → { ( 𝐶 |s 𝐷 ) } ⊆ No ) |
59 |
|
simplrr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) |
60 |
|
breq2 |
⊢ ( 𝑑 = ( 𝐶 |s 𝐷 ) → ( 𝑎 <s 𝑑 ↔ 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) |
61 |
14 60
|
ralsn |
⊢ ( ∀ 𝑑 ∈ { ( 𝐶 |s 𝐷 ) } 𝑎 <s 𝑑 ↔ 𝑎 <s ( 𝐶 |s 𝐷 ) ) |
62 |
61
|
ralbii |
⊢ ( ∀ 𝑎 ∈ 𝐴 ∀ 𝑑 ∈ { ( 𝐶 |s 𝐷 ) } 𝑎 <s 𝑑 ↔ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) |
63 |
59 62
|
sylibr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → ∀ 𝑎 ∈ 𝐴 ∀ 𝑑 ∈ { ( 𝐶 |s 𝐷 ) } 𝑎 <s 𝑑 ) |
64 |
57 58 63
|
3jca |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → ( 𝐴 ⊆ No ∧ { ( 𝐶 |s 𝐷 ) } ⊆ No ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑑 ∈ { ( 𝐶 |s 𝐷 ) } 𝑎 <s 𝑑 ) ) |
65 |
|
brsslt |
⊢ ( 𝐴 <<s { ( 𝐶 |s 𝐷 ) } ↔ ( ( 𝐴 ∈ V ∧ { ( 𝐶 |s 𝐷 ) } ∈ V ) ∧ ( 𝐴 ⊆ No ∧ { ( 𝐶 |s 𝐷 ) } ⊆ No ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑑 ∈ { ( 𝐶 |s 𝐷 ) } 𝑎 <s 𝑑 ) ) ) |
66 |
56 64 65
|
sylanbrc |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → 𝐴 <<s { ( 𝐶 |s 𝐷 ) } ) |
67 |
|
ssltex2 |
⊢ ( 𝐴 <<s 𝐵 → 𝐵 ∈ V ) |
68 |
67
|
ad3antrrr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → 𝐵 ∈ V ) |
69 |
68 55
|
jctil |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → ( { ( 𝐶 |s 𝐷 ) } ∈ V ∧ 𝐵 ∈ V ) ) |
70 |
|
ssltss2 |
⊢ ( 𝐴 <<s 𝐵 → 𝐵 ⊆ No ) |
71 |
70
|
ad3antrrr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → 𝐵 ⊆ No ) |
72 |
52
|
adantr |
⊢ ( ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝐶 |s 𝐷 ) ∈ No ) |
73 |
48
|
ad3antrrr |
⊢ ( ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝐴 |s 𝐵 ) ∈ No ) |
74 |
71
|
sselda |
⊢ ( ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ No ) |
75 |
|
simplr |
⊢ ( ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) |
76 |
28
|
simp3d |
⊢ ( 𝐴 <<s 𝐵 → { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) |
77 |
76
|
ad3antrrr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) |
78 |
|
ssltsep |
⊢ ( { ( 𝐴 |s 𝐵 ) } <<s 𝐵 → ∀ 𝑎 ∈ { ( 𝐴 |s 𝐵 ) } ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) |
79 |
77 78
|
syl |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → ∀ 𝑎 ∈ { ( 𝐴 |s 𝐵 ) } ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) |
80 |
|
breq1 |
⊢ ( 𝑎 = ( 𝐴 |s 𝐵 ) → ( 𝑎 <s 𝑏 ↔ ( 𝐴 |s 𝐵 ) <s 𝑏 ) ) |
81 |
80
|
ralbidv |
⊢ ( 𝑎 = ( 𝐴 |s 𝐵 ) → ( ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ↔ ∀ 𝑏 ∈ 𝐵 ( 𝐴 |s 𝐵 ) <s 𝑏 ) ) |
82 |
35 81
|
ralsn |
⊢ ( ∀ 𝑎 ∈ { ( 𝐴 |s 𝐵 ) } ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ↔ ∀ 𝑏 ∈ 𝐵 ( 𝐴 |s 𝐵 ) <s 𝑏 ) |
83 |
79 82
|
sylib |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → ∀ 𝑏 ∈ 𝐵 ( 𝐴 |s 𝐵 ) <s 𝑏 ) |
84 |
83
|
r19.21bi |
⊢ ( ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝐴 |s 𝐵 ) <s 𝑏 ) |
85 |
72 73 74 75 84
|
slttrd |
⊢ ( ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝐶 |s 𝐷 ) <s 𝑏 ) |
86 |
85
|
ralrimiva |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → ∀ 𝑏 ∈ 𝐵 ( 𝐶 |s 𝐷 ) <s 𝑏 ) |
87 |
|
breq1 |
⊢ ( 𝑎 = ( 𝐶 |s 𝐷 ) → ( 𝑎 <s 𝑏 ↔ ( 𝐶 |s 𝐷 ) <s 𝑏 ) ) |
88 |
87
|
ralbidv |
⊢ ( 𝑎 = ( 𝐶 |s 𝐷 ) → ( ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ↔ ∀ 𝑏 ∈ 𝐵 ( 𝐶 |s 𝐷 ) <s 𝑏 ) ) |
89 |
14 88
|
ralsn |
⊢ ( ∀ 𝑎 ∈ { ( 𝐶 |s 𝐷 ) } ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ↔ ∀ 𝑏 ∈ 𝐵 ( 𝐶 |s 𝐷 ) <s 𝑏 ) |
90 |
86 89
|
sylibr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → ∀ 𝑎 ∈ { ( 𝐶 |s 𝐷 ) } ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) |
91 |
58 71 90
|
3jca |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → ( { ( 𝐶 |s 𝐷 ) } ⊆ No ∧ 𝐵 ⊆ No ∧ ∀ 𝑎 ∈ { ( 𝐶 |s 𝐷 ) } ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) ) |
92 |
|
brsslt |
⊢ ( { ( 𝐶 |s 𝐷 ) } <<s 𝐵 ↔ ( ( { ( 𝐶 |s 𝐷 ) } ∈ V ∧ 𝐵 ∈ V ) ∧ ( { ( 𝐶 |s 𝐷 ) } ⊆ No ∧ 𝐵 ⊆ No ∧ ∀ 𝑎 ∈ { ( 𝐶 |s 𝐷 ) } ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) ) ) |
93 |
69 91 92
|
sylanbrc |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → { ( 𝐶 |s 𝐷 ) } <<s 𝐵 ) |
94 |
|
sltirr |
⊢ ( ( 𝐴 |s 𝐵 ) ∈ No → ¬ ( 𝐴 |s 𝐵 ) <s ( 𝐴 |s 𝐵 ) ) |
95 |
49 94
|
syl |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) → ¬ ( 𝐴 |s 𝐵 ) <s ( 𝐴 |s 𝐵 ) ) |
96 |
|
breq1 |
⊢ ( ( 𝐴 |s 𝐵 ) = ( 𝐶 |s 𝐷 ) → ( ( 𝐴 |s 𝐵 ) <s ( 𝐴 |s 𝐵 ) ↔ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) ) |
97 |
96
|
notbid |
⊢ ( ( 𝐴 |s 𝐵 ) = ( 𝐶 |s 𝐷 ) → ( ¬ ( 𝐴 |s 𝐵 ) <s ( 𝐴 |s 𝐵 ) ↔ ¬ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) ) |
98 |
95 97
|
syl5ibcom |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) → ( ( 𝐴 |s 𝐵 ) = ( 𝐶 |s 𝐷 ) → ¬ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) ) |
99 |
98
|
necon2ad |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) → ( ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) → ( 𝐴 |s 𝐵 ) ≠ ( 𝐶 |s 𝐷 ) ) ) |
100 |
99
|
imp |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → ( 𝐴 |s 𝐵 ) ≠ ( 𝐶 |s 𝐷 ) ) |
101 |
100
|
necomd |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → ( 𝐶 |s 𝐷 ) ≠ ( 𝐴 |s 𝐵 ) ) |
102 |
|
scutbdaylt |
⊢ ( ( ( 𝐶 |s 𝐷 ) ∈ No ∧ ( 𝐴 <<s { ( 𝐶 |s 𝐷 ) } ∧ { ( 𝐶 |s 𝐷 ) } <<s 𝐵 ) ∧ ( 𝐶 |s 𝐷 ) ≠ ( 𝐴 |s 𝐵 ) ) → ( bday ‘ ( 𝐴 |s 𝐵 ) ) ∈ ( bday ‘ ( 𝐶 |s 𝐷 ) ) ) |
103 |
52 66 93 101 102
|
syl121anc |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → ( bday ‘ ( 𝐴 |s 𝐵 ) ) ∈ ( bday ‘ ( 𝐶 |s 𝐷 ) ) ) |
104 |
1
|
ad3antrrr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → ( 𝐴 |s 𝐵 ) ∈ No ) |
105 |
|
ssltex1 |
⊢ ( 𝐶 <<s 𝐷 → 𝐶 ∈ V ) |
106 |
105
|
ad3antlr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → 𝐶 ∈ V ) |
107 |
|
snex |
⊢ { ( 𝐴 |s 𝐵 ) } ∈ V |
108 |
106 107
|
jctir |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → ( 𝐶 ∈ V ∧ { ( 𝐴 |s 𝐵 ) } ∈ V ) ) |
109 |
|
ssltss1 |
⊢ ( 𝐶 <<s 𝐷 → 𝐶 ⊆ No ) |
110 |
109
|
ad3antlr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → 𝐶 ⊆ No ) |
111 |
104
|
snssd |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → { ( 𝐴 |s 𝐵 ) } ⊆ No ) |
112 |
110
|
sselda |
⊢ ( ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) ∧ 𝑐 ∈ 𝐶 ) → 𝑐 ∈ No ) |
113 |
52
|
adantr |
⊢ ( ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) ∧ 𝑐 ∈ 𝐶 ) → ( 𝐶 |s 𝐷 ) ∈ No ) |
114 |
48
|
ad3antrrr |
⊢ ( ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) ∧ 𝑐 ∈ 𝐶 ) → ( 𝐴 |s 𝐵 ) ∈ No ) |
115 |
9
|
simp2d |
⊢ ( 𝐶 <<s 𝐷 → 𝐶 <<s { ( 𝐶 |s 𝐷 ) } ) |
116 |
115
|
ad3antlr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → 𝐶 <<s { ( 𝐶 |s 𝐷 ) } ) |
117 |
|
ssltsep |
⊢ ( 𝐶 <<s { ( 𝐶 |s 𝐷 ) } → ∀ 𝑐 ∈ 𝐶 ∀ 𝑑 ∈ { ( 𝐶 |s 𝐷 ) } 𝑐 <s 𝑑 ) |
118 |
116 117
|
syl |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → ∀ 𝑐 ∈ 𝐶 ∀ 𝑑 ∈ { ( 𝐶 |s 𝐷 ) } 𝑐 <s 𝑑 ) |
119 |
118
|
r19.21bi |
⊢ ( ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) ∧ 𝑐 ∈ 𝐶 ) → ∀ 𝑑 ∈ { ( 𝐶 |s 𝐷 ) } 𝑐 <s 𝑑 ) |
120 |
|
breq2 |
⊢ ( 𝑑 = ( 𝐶 |s 𝐷 ) → ( 𝑐 <s 𝑑 ↔ 𝑐 <s ( 𝐶 |s 𝐷 ) ) ) |
121 |
14 120
|
ralsn |
⊢ ( ∀ 𝑑 ∈ { ( 𝐶 |s 𝐷 ) } 𝑐 <s 𝑑 ↔ 𝑐 <s ( 𝐶 |s 𝐷 ) ) |
122 |
119 121
|
sylib |
⊢ ( ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) ∧ 𝑐 ∈ 𝐶 ) → 𝑐 <s ( 𝐶 |s 𝐷 ) ) |
123 |
|
simplr |
⊢ ( ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) ∧ 𝑐 ∈ 𝐶 ) → ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) |
124 |
112 113 114 122 123
|
slttrd |
⊢ ( ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) ∧ 𝑐 ∈ 𝐶 ) → 𝑐 <s ( 𝐴 |s 𝐵 ) ) |
125 |
|
breq2 |
⊢ ( 𝑎 = ( 𝐴 |s 𝐵 ) → ( 𝑐 <s 𝑎 ↔ 𝑐 <s ( 𝐴 |s 𝐵 ) ) ) |
126 |
35 125
|
ralsn |
⊢ ( ∀ 𝑎 ∈ { ( 𝐴 |s 𝐵 ) } 𝑐 <s 𝑎 ↔ 𝑐 <s ( 𝐴 |s 𝐵 ) ) |
127 |
124 126
|
sylibr |
⊢ ( ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) ∧ 𝑐 ∈ 𝐶 ) → ∀ 𝑎 ∈ { ( 𝐴 |s 𝐵 ) } 𝑐 <s 𝑎 ) |
128 |
127
|
ralrimiva |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → ∀ 𝑐 ∈ 𝐶 ∀ 𝑎 ∈ { ( 𝐴 |s 𝐵 ) } 𝑐 <s 𝑎 ) |
129 |
110 111 128
|
3jca |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → ( 𝐶 ⊆ No ∧ { ( 𝐴 |s 𝐵 ) } ⊆ No ∧ ∀ 𝑐 ∈ 𝐶 ∀ 𝑎 ∈ { ( 𝐴 |s 𝐵 ) } 𝑐 <s 𝑎 ) ) |
130 |
|
brsslt |
⊢ ( 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ↔ ( ( 𝐶 ∈ V ∧ { ( 𝐴 |s 𝐵 ) } ∈ V ) ∧ ( 𝐶 ⊆ No ∧ { ( 𝐴 |s 𝐵 ) } ⊆ No ∧ ∀ 𝑐 ∈ 𝐶 ∀ 𝑎 ∈ { ( 𝐴 |s 𝐵 ) } 𝑐 <s 𝑎 ) ) ) |
131 |
108 129 130
|
sylanbrc |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ) |
132 |
|
ssltex2 |
⊢ ( 𝐶 <<s 𝐷 → 𝐷 ∈ V ) |
133 |
132
|
ad3antlr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → 𝐷 ∈ V ) |
134 |
133 107
|
jctil |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → ( { ( 𝐴 |s 𝐵 ) } ∈ V ∧ 𝐷 ∈ V ) ) |
135 |
5
|
ad3antlr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → 𝐷 ⊆ No ) |
136 |
|
simplrl |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ) |
137 |
|
breq1 |
⊢ ( 𝑎 = ( 𝐴 |s 𝐵 ) → ( 𝑎 <s 𝑑 ↔ ( 𝐴 |s 𝐵 ) <s 𝑑 ) ) |
138 |
137
|
ralbidv |
⊢ ( 𝑎 = ( 𝐴 |s 𝐵 ) → ( ∀ 𝑑 ∈ 𝐷 𝑎 <s 𝑑 ↔ ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ) ) |
139 |
35 138
|
ralsn |
⊢ ( ∀ 𝑎 ∈ { ( 𝐴 |s 𝐵 ) } ∀ 𝑑 ∈ 𝐷 𝑎 <s 𝑑 ↔ ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ) |
140 |
136 139
|
sylibr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → ∀ 𝑎 ∈ { ( 𝐴 |s 𝐵 ) } ∀ 𝑑 ∈ 𝐷 𝑎 <s 𝑑 ) |
141 |
111 135 140
|
3jca |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → ( { ( 𝐴 |s 𝐵 ) } ⊆ No ∧ 𝐷 ⊆ No ∧ ∀ 𝑎 ∈ { ( 𝐴 |s 𝐵 ) } ∀ 𝑑 ∈ 𝐷 𝑎 <s 𝑑 ) ) |
142 |
|
brsslt |
⊢ ( { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ↔ ( ( { ( 𝐴 |s 𝐵 ) } ∈ V ∧ 𝐷 ∈ V ) ∧ ( { ( 𝐴 |s 𝐵 ) } ⊆ No ∧ 𝐷 ⊆ No ∧ ∀ 𝑎 ∈ { ( 𝐴 |s 𝐵 ) } ∀ 𝑑 ∈ 𝐷 𝑎 <s 𝑑 ) ) ) |
143 |
134 141 142
|
sylanbrc |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) |
144 |
|
scutbdaylt |
⊢ ( ( ( 𝐴 |s 𝐵 ) ∈ No ∧ ( 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ∧ ( 𝐴 |s 𝐵 ) ≠ ( 𝐶 |s 𝐷 ) ) → ( bday ‘ ( 𝐶 |s 𝐷 ) ) ∈ ( bday ‘ ( 𝐴 |s 𝐵 ) ) ) |
145 |
104 131 143 100 144
|
syl121anc |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → ( bday ‘ ( 𝐶 |s 𝐷 ) ) ∈ ( bday ‘ ( 𝐴 |s 𝐵 ) ) ) |
146 |
103 145
|
jca |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → ( ( bday ‘ ( 𝐴 |s 𝐵 ) ) ∈ ( bday ‘ ( 𝐶 |s 𝐷 ) ) ∧ ( bday ‘ ( 𝐶 |s 𝐷 ) ) ∈ ( bday ‘ ( 𝐴 |s 𝐵 ) ) ) ) |
147 |
146
|
ex |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) → ( ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) → ( ( bday ‘ ( 𝐴 |s 𝐵 ) ) ∈ ( bday ‘ ( 𝐶 |s 𝐷 ) ) ∧ ( bday ‘ ( 𝐶 |s 𝐷 ) ) ∈ ( bday ‘ ( 𝐴 |s 𝐵 ) ) ) ) ) |
148 |
51 147
|
sylbird |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) → ( ¬ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) → ( ( bday ‘ ( 𝐴 |s 𝐵 ) ) ∈ ( bday ‘ ( 𝐶 |s 𝐷 ) ) ∧ ( bday ‘ ( 𝐶 |s 𝐷 ) ) ∈ ( bday ‘ ( 𝐴 |s 𝐵 ) ) ) ) ) |
149 |
46 148
|
mt3i |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) → ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) |
150 |
42 149
|
impbida |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) → ( ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ↔ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ) |
151 |
|
breq12 |
⊢ ( ( 𝑋 = ( 𝐴 |s 𝐵 ) ∧ 𝑌 = ( 𝐶 |s 𝐷 ) ) → ( 𝑋 ≤s 𝑌 ↔ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) ) |
152 |
|
breq1 |
⊢ ( 𝑋 = ( 𝐴 |s 𝐵 ) → ( 𝑋 <s 𝑑 ↔ ( 𝐴 |s 𝐵 ) <s 𝑑 ) ) |
153 |
152
|
ralbidv |
⊢ ( 𝑋 = ( 𝐴 |s 𝐵 ) → ( ∀ 𝑑 ∈ 𝐷 𝑋 <s 𝑑 ↔ ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ) ) |
154 |
|
breq2 |
⊢ ( 𝑌 = ( 𝐶 |s 𝐷 ) → ( 𝑎 <s 𝑌 ↔ 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) |
155 |
154
|
ralbidv |
⊢ ( 𝑌 = ( 𝐶 |s 𝐷 ) → ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑌 ↔ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) |
156 |
153 155
|
bi2anan9 |
⊢ ( ( 𝑋 = ( 𝐴 |s 𝐵 ) ∧ 𝑌 = ( 𝐶 |s 𝐷 ) ) → ( ( ∀ 𝑑 ∈ 𝐷 𝑋 <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑌 ) ↔ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ) |
157 |
151 156
|
bibi12d |
⊢ ( ( 𝑋 = ( 𝐴 |s 𝐵 ) ∧ 𝑌 = ( 𝐶 |s 𝐷 ) ) → ( ( 𝑋 ≤s 𝑌 ↔ ( ∀ 𝑑 ∈ 𝐷 𝑋 <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑌 ) ) ↔ ( ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ↔ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ) ) |
158 |
150 157
|
syl5ibr |
⊢ ( ( 𝑋 = ( 𝐴 |s 𝐵 ) ∧ 𝑌 = ( 𝐶 |s 𝐷 ) ) → ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) → ( 𝑋 ≤s 𝑌 ↔ ( ∀ 𝑑 ∈ 𝐷 𝑋 <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑌 ) ) ) ) |
159 |
158
|
impcom |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝑋 = ( 𝐴 |s 𝐵 ) ∧ 𝑌 = ( 𝐶 |s 𝐷 ) ) ) → ( 𝑋 ≤s 𝑌 ↔ ( ∀ 𝑑 ∈ 𝐷 𝑋 <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑌 ) ) ) |