Metamath Proof Explorer


Theorem slerecd

Description: A comparison law for surreals considered as cuts of sets of surreals. Definition from Conway p. 4. Theorem 4 of Alling p. 186. Theorem 2.5 of Gonshor p. 9. (Contributed by Scott Fenton, 5-Dec-2025)

Ref Expression
Hypotheses slerecd.1 φ A s B
slerecd.2 φ C s D
slerecd.3 φ X = A | s B
slerecd.4 φ Y = C | s D
Assertion slerecd φ X s Y d D X < s d a A a < s Y

Proof

Step Hyp Ref Expression
1 slerecd.1 φ A s B
2 slerecd.2 φ C s D
3 slerecd.3 φ X = A | s B
4 slerecd.4 φ Y = C | s D
5 slerec A s B C s D X = A | s B Y = C | s D X s Y d D X < s d a A a < s Y
6 1 2 3 4 5 syl22anc φ X s Y d D X < s d a A a < s Y