Database
SURREAL NUMBERS
Conway cut representation
Conway cuts
slerecd
Metamath Proof Explorer
Description: A comparison law for surreals considered as cuts of sets of surreals.
Definition from Conway p. 4. Theorem 4 of Alling p. 186. Theorem
2.5 of Gonshor p. 9. (Contributed by Scott Fenton , 5-Dec-2025)
Ref
Expression
Hypotheses
slerecd.1
⊢ φ → A ≪ s B
slerecd.2
⊢ φ → C ≪ s D
slerecd.3
⊢ φ → X = A | s B
slerecd.4
⊢ φ → Y = C | s D
Assertion
slerecd
⊢ φ → X ≤ s Y ↔ ∀ d ∈ D X < s d ∧ ∀ a ∈ A a < s Y
Proof
Step
Hyp
Ref
Expression
1
slerecd.1
⊢ φ → A ≪ s B
2
slerecd.2
⊢ φ → C ≪ s D
3
slerecd.3
⊢ φ → X = A | s B
4
slerecd.4
⊢ φ → Y = C | s D
5
slerec
⊢ A ≪ s B ∧ C ≪ s D ∧ X = A | s B ∧ Y = C | s D → X ≤ s Y ↔ ∀ d ∈ D X < s d ∧ ∀ a ∈ A a < s Y
6
1 2 3 4 5
syl22anc
⊢ φ → X ≤ s Y ↔ ∀ d ∈ D X < s d ∧ ∀ a ∈ A a < s Y