Metamath Proof Explorer


Theorem sltrec

Description: A comparison law for surreals considered as cuts of sets of surreals. (Contributed by Scott Fenton, 11-Dec-2021)

Ref Expression
Assertion sltrec AsBCsDX=A|sBY=C|sDX<sYcCXscbBbsY

Proof

Step Hyp Ref Expression
1 simplr AsBCsDX=A|sBY=C|sDCsD
2 simpll AsBCsDX=A|sBY=C|sDAsB
3 simprr AsBCsDX=A|sBY=C|sDY=C|sD
4 simprl AsBCsDX=A|sBY=C|sDX=A|sB
5 slerec CsDAsBY=C|sDX=A|sBYsXbBY<sbcCc<sX
6 1 2 3 4 5 syl22anc AsBCsDX=A|sBY=C|sDYsXbBY<sbcCc<sX
7 ancom bBY<sbcCc<sXcCc<sXbBY<sb
8 6 7 bitrdi AsBCsDX=A|sBY=C|sDYsXcCc<sXbBY<sb
9 scutcut CsDC|sDNoCsC|sDC|sDsD
10 9 simp1d CsDC|sDNo
11 10 ad2antlr AsBCsDX=A|sBY=C|sDC|sDNo
12 3 11 eqeltrd AsBCsDX=A|sBY=C|sDYNo
13 scutcut AsBA|sBNoAsA|sBA|sBsB
14 13 simp1d AsBA|sBNo
15 14 ad2antrr AsBCsDX=A|sBY=C|sDA|sBNo
16 4 15 eqeltrd AsBCsDX=A|sBY=C|sDXNo
17 slenlt YNoXNoYsX¬X<sY
18 12 16 17 syl2anc AsBCsDX=A|sBY=C|sDYsX¬X<sY
19 ssltss1 CsDCNo
20 19 ad2antlr AsBCsDX=A|sBY=C|sDCNo
21 20 sselda AsBCsDX=A|sBY=C|sDcCcNo
22 16 adantr AsBCsDX=A|sBY=C|sDcCXNo
23 sltnle cNoXNoc<sX¬Xsc
24 21 22 23 syl2anc AsBCsDX=A|sBY=C|sDcCc<sX¬Xsc
25 24 ralbidva AsBCsDX=A|sBY=C|sDcCc<sXcC¬Xsc
26 12 adantr AsBCsDX=A|sBY=C|sDbBYNo
27 ssltss2 AsBBNo
28 27 ad2antrr AsBCsDX=A|sBY=C|sDBNo
29 28 sselda AsBCsDX=A|sBY=C|sDbBbNo
30 sltnle YNobNoY<sb¬bsY
31 26 29 30 syl2anc AsBCsDX=A|sBY=C|sDbBY<sb¬bsY
32 31 ralbidva AsBCsDX=A|sBY=C|sDbBY<sbbB¬bsY
33 25 32 anbi12d AsBCsDX=A|sBY=C|sDcCc<sXbBY<sbcC¬XscbB¬bsY
34 ralnex cC¬Xsc¬cCXsc
35 ralnex bB¬bsY¬bBbsY
36 34 35 anbi12i cC¬XscbB¬bsY¬cCXsc¬bBbsY
37 ioran ¬cCXscbBbsY¬cCXsc¬bBbsY
38 36 37 bitr4i cC¬XscbB¬bsY¬cCXscbBbsY
39 33 38 bitrdi AsBCsDX=A|sBY=C|sDcCc<sXbBY<sb¬cCXscbBbsY
40 8 18 39 3bitr3d AsBCsDX=A|sBY=C|sD¬X<sY¬cCXscbBbsY
41 40 con4bid AsBCsDX=A|sBY=C|sDX<sYcCXscbBbsY