Description: A comparison law for surreals considered as cuts of sets of surreals. (Contributed by Scott Fenton, 11-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | sltrec | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr | |
|
2 | simpll | |
|
3 | simprr | |
|
4 | simprl | |
|
5 | slerec | |
|
6 | 1 2 3 4 5 | syl22anc | |
7 | ancom | |
|
8 | 6 7 | bitrdi | |
9 | scutcut | |
|
10 | 9 | simp1d | |
11 | 10 | ad2antlr | |
12 | 3 11 | eqeltrd | |
13 | scutcut | |
|
14 | 13 | simp1d | |
15 | 14 | ad2antrr | |
16 | 4 15 | eqeltrd | |
17 | slenlt | |
|
18 | 12 16 17 | syl2anc | |
19 | ssltss1 | |
|
20 | 19 | ad2antlr | |
21 | 20 | sselda | |
22 | 16 | adantr | |
23 | sltnle | |
|
24 | 21 22 23 | syl2anc | |
25 | 24 | ralbidva | |
26 | 12 | adantr | |
27 | ssltss2 | |
|
28 | 27 | ad2antrr | |
29 | 28 | sselda | |
30 | sltnle | |
|
31 | 26 29 30 | syl2anc | |
32 | 31 | ralbidva | |
33 | 25 32 | anbi12d | |
34 | ralnex | |
|
35 | ralnex | |
|
36 | 34 35 | anbi12i | |
37 | ioran | |
|
38 | 36 37 | bitr4i | |
39 | 33 38 | bitrdi | |
40 | 8 18 39 | 3bitr3d | |
41 | 40 | con4bid | |