Metamath Proof Explorer


Theorem sltrec

Description: A comparison law for surreals considered as cuts of sets of surreals. (Contributed by Scott Fenton, 11-Dec-2021)

Ref Expression
Assertion sltrec A s B C s D X = A | s B Y = C | s D X < s Y c C X s c b B b s Y

Proof

Step Hyp Ref Expression
1 simplr A s B C s D X = A | s B Y = C | s D C s D
2 simpll A s B C s D X = A | s B Y = C | s D A s B
3 simprr A s B C s D X = A | s B Y = C | s D Y = C | s D
4 simprl A s B C s D X = A | s B Y = C | s D X = A | s B
5 1 2 3 4 slerecd A s B C s D X = A | s B Y = C | s D Y s X b B Y < s b c C c < s X
6 ancom b B Y < s b c C c < s X c C c < s X b B Y < s b
7 5 6 bitrdi A s B C s D X = A | s B Y = C | s D Y s X c C c < s X b B Y < s b
8 scutcut C s D C | s D No C s C | s D C | s D s D
9 8 simp1d C s D C | s D No
10 9 ad2antlr A s B C s D X = A | s B Y = C | s D C | s D No
11 3 10 eqeltrd A s B C s D X = A | s B Y = C | s D Y No
12 scutcut A s B A | s B No A s A | s B A | s B s B
13 12 simp1d A s B A | s B No
14 13 ad2antrr A s B C s D X = A | s B Y = C | s D A | s B No
15 4 14 eqeltrd A s B C s D X = A | s B Y = C | s D X No
16 slenlt Y No X No Y s X ¬ X < s Y
17 11 15 16 syl2anc A s B C s D X = A | s B Y = C | s D Y s X ¬ X < s Y
18 ssltss1 C s D C No
19 18 ad2antlr A s B C s D X = A | s B Y = C | s D C No
20 19 sselda A s B C s D X = A | s B Y = C | s D c C c No
21 15 adantr A s B C s D X = A | s B Y = C | s D c C X No
22 sltnle c No X No c < s X ¬ X s c
23 20 21 22 syl2anc A s B C s D X = A | s B Y = C | s D c C c < s X ¬ X s c
24 23 ralbidva A s B C s D X = A | s B Y = C | s D c C c < s X c C ¬ X s c
25 11 adantr A s B C s D X = A | s B Y = C | s D b B Y No
26 ssltss2 A s B B No
27 26 ad2antrr A s B C s D X = A | s B Y = C | s D B No
28 27 sselda A s B C s D X = A | s B Y = C | s D b B b No
29 sltnle Y No b No Y < s b ¬ b s Y
30 25 28 29 syl2anc A s B C s D X = A | s B Y = C | s D b B Y < s b ¬ b s Y
31 30 ralbidva A s B C s D X = A | s B Y = C | s D b B Y < s b b B ¬ b s Y
32 24 31 anbi12d A s B C s D X = A | s B Y = C | s D c C c < s X b B Y < s b c C ¬ X s c b B ¬ b s Y
33 ralnex c C ¬ X s c ¬ c C X s c
34 ralnex b B ¬ b s Y ¬ b B b s Y
35 33 34 anbi12i c C ¬ X s c b B ¬ b s Y ¬ c C X s c ¬ b B b s Y
36 ioran ¬ c C X s c b B b s Y ¬ c C X s c ¬ b B b s Y
37 35 36 bitr4i c C ¬ X s c b B ¬ b s Y ¬ c C X s c b B b s Y
38 32 37 bitrdi A s B C s D X = A | s B Y = C | s D c C c < s X b B Y < s b ¬ c C X s c b B b s Y
39 7 17 38 3bitr3d A s B C s D X = A | s B Y = C | s D ¬ X < s Y ¬ c C X s c b B b s Y
40 39 con4bid A s B C s D X = A | s B Y = C | s D X < s Y c C X s c b B b s Y