| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sltsubsubbd.1 | ⊢ ( 𝜑  →  𝐴  ∈   No  ) | 
						
							| 2 |  | sltsubsubbd.2 | ⊢ ( 𝜑  →  𝐵  ∈   No  ) | 
						
							| 3 |  | sltsubsubbd.3 | ⊢ ( 𝜑  →  𝐶  ∈   No  ) | 
						
							| 4 |  | sltsubsubbd.4 | ⊢ ( 𝜑  →  𝐷  ∈   No  ) | 
						
							| 5 | 2 1 4 3 | sltsubsubbd | ⊢ ( 𝜑  →  ( ( 𝐵  -s  𝐷 )  <s  ( 𝐴  -s  𝐶 )  ↔  ( 𝐵  -s  𝐴 )  <s  ( 𝐷  -s  𝐶 ) ) ) | 
						
							| 6 | 5 | notbid | ⊢ ( 𝜑  →  ( ¬  ( 𝐵  -s  𝐷 )  <s  ( 𝐴  -s  𝐶 )  ↔  ¬  ( 𝐵  -s  𝐴 )  <s  ( 𝐷  -s  𝐶 ) ) ) | 
						
							| 7 | 1 3 | subscld | ⊢ ( 𝜑  →  ( 𝐴  -s  𝐶 )  ∈   No  ) | 
						
							| 8 | 2 4 | subscld | ⊢ ( 𝜑  →  ( 𝐵  -s  𝐷 )  ∈   No  ) | 
						
							| 9 |  | slenlt | ⊢ ( ( ( 𝐴  -s  𝐶 )  ∈   No   ∧  ( 𝐵  -s  𝐷 )  ∈   No  )  →  ( ( 𝐴  -s  𝐶 )  ≤s  ( 𝐵  -s  𝐷 )  ↔  ¬  ( 𝐵  -s  𝐷 )  <s  ( 𝐴  -s  𝐶 ) ) ) | 
						
							| 10 | 7 8 9 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐴  -s  𝐶 )  ≤s  ( 𝐵  -s  𝐷 )  ↔  ¬  ( 𝐵  -s  𝐷 )  <s  ( 𝐴  -s  𝐶 ) ) ) | 
						
							| 11 | 4 3 | subscld | ⊢ ( 𝜑  →  ( 𝐷  -s  𝐶 )  ∈   No  ) | 
						
							| 12 | 2 1 | subscld | ⊢ ( 𝜑  →  ( 𝐵  -s  𝐴 )  ∈   No  ) | 
						
							| 13 |  | slenlt | ⊢ ( ( ( 𝐷  -s  𝐶 )  ∈   No   ∧  ( 𝐵  -s  𝐴 )  ∈   No  )  →  ( ( 𝐷  -s  𝐶 )  ≤s  ( 𝐵  -s  𝐴 )  ↔  ¬  ( 𝐵  -s  𝐴 )  <s  ( 𝐷  -s  𝐶 ) ) ) | 
						
							| 14 | 11 12 13 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐷  -s  𝐶 )  ≤s  ( 𝐵  -s  𝐴 )  ↔  ¬  ( 𝐵  -s  𝐴 )  <s  ( 𝐷  -s  𝐶 ) ) ) | 
						
							| 15 | 6 10 14 | 3bitr4d | ⊢ ( 𝜑  →  ( ( 𝐴  -s  𝐶 )  ≤s  ( 𝐵  -s  𝐷 )  ↔  ( 𝐷  -s  𝐶 )  ≤s  ( 𝐵  -s  𝐴 ) ) ) |