Metamath Proof Explorer


Theorem smueq

Description: Any element of a sequence multiplication only depends on the values of the argument sequences up to and including that point. (Contributed by Mario Carneiro, 20-Sep-2016)

Ref Expression
Hypotheses smueq.a ( 𝜑𝐴 ⊆ ℕ0 )
smueq.b ( 𝜑𝐵 ⊆ ℕ0 )
smueq.n ( 𝜑𝑁 ∈ ℕ0 )
Assertion smueq ( 𝜑 → ( ( 𝐴 smul 𝐵 ) ∩ ( 0 ..^ 𝑁 ) ) = ( ( ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) smul ( 𝐵 ∩ ( 0 ..^ 𝑁 ) ) ) ∩ ( 0 ..^ 𝑁 ) ) )

Proof

Step Hyp Ref Expression
1 smueq.a ( 𝜑𝐴 ⊆ ℕ0 )
2 smueq.b ( 𝜑𝐵 ⊆ ℕ0 )
3 smueq.n ( 𝜑𝑁 ∈ ℕ0 )
4 eqid seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚𝐴 ∧ ( 𝑛𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) = seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚𝐴 ∧ ( 𝑛𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) )
5 eqid seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚𝐴 ∧ ( 𝑛𝑚 ) ∈ ( 𝐵 ∩ ( 0 ..^ 𝑁 ) ) ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) = seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚𝐴 ∧ ( 𝑛𝑚 ) ∈ ( 𝐵 ∩ ( 0 ..^ 𝑁 ) ) ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) )
6 1 2 3 4 5 smueqlem ( 𝜑 → ( ( 𝐴 smul 𝐵 ) ∩ ( 0 ..^ 𝑁 ) ) = ( ( ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) smul ( 𝐵 ∩ ( 0 ..^ 𝑁 ) ) ) ∩ ( 0 ..^ 𝑁 ) ) )