Description: Any element of a sequence multiplication only depends on the values of the argument sequences up to and including that point. (Contributed by Mario Carneiro, 20-Sep-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | smueq.a | |- ( ph -> A C_ NN0 ) | |
| smueq.b | |- ( ph -> B C_ NN0 ) | ||
| smueq.n | |- ( ph -> N e. NN0 ) | ||
| Assertion | smueq | |- ( ph -> ( ( A smul B ) i^i ( 0 ..^ N ) ) = ( ( ( A i^i ( 0 ..^ N ) ) smul ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | smueq.a | |- ( ph -> A C_ NN0 ) | |
| 2 | smueq.b | |- ( ph -> B C_ NN0 ) | |
| 3 | smueq.n | |- ( ph -> N e. NN0 ) | |
| 4 | eqid |  |-  seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. A /\ ( n - m ) e. B ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) = seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. A /\ ( n - m ) e. B ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) | |
| 5 | eqid |  |-  seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. A /\ ( n - m ) e. ( B i^i ( 0 ..^ N ) ) ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) = seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. A /\ ( n - m ) e. ( B i^i ( 0 ..^ N ) ) ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) | |
| 6 | 1 2 3 4 5 | smueqlem | |- ( ph -> ( ( A smul B ) i^i ( 0 ..^ N ) ) = ( ( ( A i^i ( 0 ..^ N ) ) smul ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) |