Description: Any element of a sequence multiplication only depends on the values of the argument sequences up to and including that point. (Contributed by Mario Carneiro, 20-Sep-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | smueq.a | |- ( ph -> A C_ NN0 ) |
|
smueq.b | |- ( ph -> B C_ NN0 ) |
||
smueq.n | |- ( ph -> N e. NN0 ) |
||
Assertion | smueq | |- ( ph -> ( ( A smul B ) i^i ( 0 ..^ N ) ) = ( ( ( A i^i ( 0 ..^ N ) ) smul ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smueq.a | |- ( ph -> A C_ NN0 ) |
|
2 | smueq.b | |- ( ph -> B C_ NN0 ) |
|
3 | smueq.n | |- ( ph -> N e. NN0 ) |
|
4 | eqid | |- seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. A /\ ( n - m ) e. B ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) = seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. A /\ ( n - m ) e. B ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) |
|
5 | eqid | |- seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. A /\ ( n - m ) e. ( B i^i ( 0 ..^ N ) ) ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) = seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. A /\ ( n - m ) e. ( B i^i ( 0 ..^ N ) ) ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) |
|
6 | 1 2 3 4 5 | smueqlem | |- ( ph -> ( ( A smul B ) i^i ( 0 ..^ N ) ) = ( ( ( A i^i ( 0 ..^ N ) ) smul ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) |