| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smueq.a |  |-  ( ph -> A C_ NN0 ) | 
						
							| 2 |  | smueq.b |  |-  ( ph -> B C_ NN0 ) | 
						
							| 3 |  | smueq.n |  |-  ( ph -> N e. NN0 ) | 
						
							| 4 |  | smueq.p |  |-  P = seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. A /\ ( n - m ) e. B ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) | 
						
							| 5 |  | smueq.q |  |-  Q = seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. A /\ ( n - m ) e. ( B i^i ( 0 ..^ N ) ) ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) | 
						
							| 6 | 1 | adantr |  |-  ( ( ph /\ k e. ( 0 ..^ N ) ) -> A C_ NN0 ) | 
						
							| 7 | 2 | adantr |  |-  ( ( ph /\ k e. ( 0 ..^ N ) ) -> B C_ NN0 ) | 
						
							| 8 |  | elfzouz |  |-  ( k e. ( 0 ..^ N ) -> k e. ( ZZ>= ` 0 ) ) | 
						
							| 9 | 8 | adantl |  |-  ( ( ph /\ k e. ( 0 ..^ N ) ) -> k e. ( ZZ>= ` 0 ) ) | 
						
							| 10 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 11 | 9 10 | eleqtrrdi |  |-  ( ( ph /\ k e. ( 0 ..^ N ) ) -> k e. NN0 ) | 
						
							| 12 | 11 | nn0zd |  |-  ( ( ph /\ k e. ( 0 ..^ N ) ) -> k e. ZZ ) | 
						
							| 13 | 12 | peano2zd |  |-  ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( k + 1 ) e. ZZ ) | 
						
							| 14 | 3 | adantr |  |-  ( ( ph /\ k e. ( 0 ..^ N ) ) -> N e. NN0 ) | 
						
							| 15 | 14 | nn0zd |  |-  ( ( ph /\ k e. ( 0 ..^ N ) ) -> N e. ZZ ) | 
						
							| 16 |  | elfzolt2 |  |-  ( k e. ( 0 ..^ N ) -> k < N ) | 
						
							| 17 | 16 | adantl |  |-  ( ( ph /\ k e. ( 0 ..^ N ) ) -> k < N ) | 
						
							| 18 |  | nn0ltp1le |  |-  ( ( k e. NN0 /\ N e. NN0 ) -> ( k < N <-> ( k + 1 ) <_ N ) ) | 
						
							| 19 | 11 14 18 | syl2anc |  |-  ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( k < N <-> ( k + 1 ) <_ N ) ) | 
						
							| 20 | 17 19 | mpbid |  |-  ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( k + 1 ) <_ N ) | 
						
							| 21 |  | eluz2 |  |-  ( N e. ( ZZ>= ` ( k + 1 ) ) <-> ( ( k + 1 ) e. ZZ /\ N e. ZZ /\ ( k + 1 ) <_ N ) ) | 
						
							| 22 | 13 15 20 21 | syl3anbrc |  |-  ( ( ph /\ k e. ( 0 ..^ N ) ) -> N e. ( ZZ>= ` ( k + 1 ) ) ) | 
						
							| 23 | 6 7 4 11 22 | smuval2 |  |-  ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( k e. ( A smul B ) <-> k e. ( P ` N ) ) ) | 
						
							| 24 | 3 10 | eleqtrdi |  |-  ( ph -> N e. ( ZZ>= ` 0 ) ) | 
						
							| 25 |  | eluzfz2b |  |-  ( N e. ( ZZ>= ` 0 ) <-> N e. ( 0 ... N ) ) | 
						
							| 26 | 24 25 | sylib |  |-  ( ph -> N e. ( 0 ... N ) ) | 
						
							| 27 |  | fveq2 |  |-  ( x = 0 -> ( P ` x ) = ( P ` 0 ) ) | 
						
							| 28 | 27 | ineq1d |  |-  ( x = 0 -> ( ( P ` x ) i^i ( 0 ..^ N ) ) = ( ( P ` 0 ) i^i ( 0 ..^ N ) ) ) | 
						
							| 29 |  | fveq2 |  |-  ( x = 0 -> ( Q ` x ) = ( Q ` 0 ) ) | 
						
							| 30 | 29 | ineq1d |  |-  ( x = 0 -> ( ( Q ` x ) i^i ( 0 ..^ N ) ) = ( ( Q ` 0 ) i^i ( 0 ..^ N ) ) ) | 
						
							| 31 | 28 30 | eqeq12d |  |-  ( x = 0 -> ( ( ( P ` x ) i^i ( 0 ..^ N ) ) = ( ( Q ` x ) i^i ( 0 ..^ N ) ) <-> ( ( P ` 0 ) i^i ( 0 ..^ N ) ) = ( ( Q ` 0 ) i^i ( 0 ..^ N ) ) ) ) | 
						
							| 32 | 31 | imbi2d |  |-  ( x = 0 -> ( ( ph -> ( ( P ` x ) i^i ( 0 ..^ N ) ) = ( ( Q ` x ) i^i ( 0 ..^ N ) ) ) <-> ( ph -> ( ( P ` 0 ) i^i ( 0 ..^ N ) ) = ( ( Q ` 0 ) i^i ( 0 ..^ N ) ) ) ) ) | 
						
							| 33 |  | fveq2 |  |-  ( x = i -> ( P ` x ) = ( P ` i ) ) | 
						
							| 34 | 33 | ineq1d |  |-  ( x = i -> ( ( P ` x ) i^i ( 0 ..^ N ) ) = ( ( P ` i ) i^i ( 0 ..^ N ) ) ) | 
						
							| 35 |  | fveq2 |  |-  ( x = i -> ( Q ` x ) = ( Q ` i ) ) | 
						
							| 36 | 35 | ineq1d |  |-  ( x = i -> ( ( Q ` x ) i^i ( 0 ..^ N ) ) = ( ( Q ` i ) i^i ( 0 ..^ N ) ) ) | 
						
							| 37 | 34 36 | eqeq12d |  |-  ( x = i -> ( ( ( P ` x ) i^i ( 0 ..^ N ) ) = ( ( Q ` x ) i^i ( 0 ..^ N ) ) <-> ( ( P ` i ) i^i ( 0 ..^ N ) ) = ( ( Q ` i ) i^i ( 0 ..^ N ) ) ) ) | 
						
							| 38 | 37 | imbi2d |  |-  ( x = i -> ( ( ph -> ( ( P ` x ) i^i ( 0 ..^ N ) ) = ( ( Q ` x ) i^i ( 0 ..^ N ) ) ) <-> ( ph -> ( ( P ` i ) i^i ( 0 ..^ N ) ) = ( ( Q ` i ) i^i ( 0 ..^ N ) ) ) ) ) | 
						
							| 39 |  | fveq2 |  |-  ( x = ( i + 1 ) -> ( P ` x ) = ( P ` ( i + 1 ) ) ) | 
						
							| 40 | 39 | ineq1d |  |-  ( x = ( i + 1 ) -> ( ( P ` x ) i^i ( 0 ..^ N ) ) = ( ( P ` ( i + 1 ) ) i^i ( 0 ..^ N ) ) ) | 
						
							| 41 |  | fveq2 |  |-  ( x = ( i + 1 ) -> ( Q ` x ) = ( Q ` ( i + 1 ) ) ) | 
						
							| 42 | 41 | ineq1d |  |-  ( x = ( i + 1 ) -> ( ( Q ` x ) i^i ( 0 ..^ N ) ) = ( ( Q ` ( i + 1 ) ) i^i ( 0 ..^ N ) ) ) | 
						
							| 43 | 40 42 | eqeq12d |  |-  ( x = ( i + 1 ) -> ( ( ( P ` x ) i^i ( 0 ..^ N ) ) = ( ( Q ` x ) i^i ( 0 ..^ N ) ) <-> ( ( P ` ( i + 1 ) ) i^i ( 0 ..^ N ) ) = ( ( Q ` ( i + 1 ) ) i^i ( 0 ..^ N ) ) ) ) | 
						
							| 44 | 43 | imbi2d |  |-  ( x = ( i + 1 ) -> ( ( ph -> ( ( P ` x ) i^i ( 0 ..^ N ) ) = ( ( Q ` x ) i^i ( 0 ..^ N ) ) ) <-> ( ph -> ( ( P ` ( i + 1 ) ) i^i ( 0 ..^ N ) ) = ( ( Q ` ( i + 1 ) ) i^i ( 0 ..^ N ) ) ) ) ) | 
						
							| 45 |  | fveq2 |  |-  ( x = N -> ( P ` x ) = ( P ` N ) ) | 
						
							| 46 | 45 | ineq1d |  |-  ( x = N -> ( ( P ` x ) i^i ( 0 ..^ N ) ) = ( ( P ` N ) i^i ( 0 ..^ N ) ) ) | 
						
							| 47 |  | fveq2 |  |-  ( x = N -> ( Q ` x ) = ( Q ` N ) ) | 
						
							| 48 | 47 | ineq1d |  |-  ( x = N -> ( ( Q ` x ) i^i ( 0 ..^ N ) ) = ( ( Q ` N ) i^i ( 0 ..^ N ) ) ) | 
						
							| 49 | 46 48 | eqeq12d |  |-  ( x = N -> ( ( ( P ` x ) i^i ( 0 ..^ N ) ) = ( ( Q ` x ) i^i ( 0 ..^ N ) ) <-> ( ( P ` N ) i^i ( 0 ..^ N ) ) = ( ( Q ` N ) i^i ( 0 ..^ N ) ) ) ) | 
						
							| 50 | 49 | imbi2d |  |-  ( x = N -> ( ( ph -> ( ( P ` x ) i^i ( 0 ..^ N ) ) = ( ( Q ` x ) i^i ( 0 ..^ N ) ) ) <-> ( ph -> ( ( P ` N ) i^i ( 0 ..^ N ) ) = ( ( Q ` N ) i^i ( 0 ..^ N ) ) ) ) ) | 
						
							| 51 | 1 2 4 | smup0 |  |-  ( ph -> ( P ` 0 ) = (/) ) | 
						
							| 52 |  | inss1 |  |-  ( B i^i ( 0 ..^ N ) ) C_ B | 
						
							| 53 | 52 2 | sstrid |  |-  ( ph -> ( B i^i ( 0 ..^ N ) ) C_ NN0 ) | 
						
							| 54 | 1 53 5 | smup0 |  |-  ( ph -> ( Q ` 0 ) = (/) ) | 
						
							| 55 | 51 54 | eqtr4d |  |-  ( ph -> ( P ` 0 ) = ( Q ` 0 ) ) | 
						
							| 56 | 55 | ineq1d |  |-  ( ph -> ( ( P ` 0 ) i^i ( 0 ..^ N ) ) = ( ( Q ` 0 ) i^i ( 0 ..^ N ) ) ) | 
						
							| 57 | 56 | a1i |  |-  ( N e. ( ZZ>= ` 0 ) -> ( ph -> ( ( P ` 0 ) i^i ( 0 ..^ N ) ) = ( ( Q ` 0 ) i^i ( 0 ..^ N ) ) ) ) | 
						
							| 58 |  | oveq1 |  |-  ( ( ( P ` i ) i^i ( 0 ..^ N ) ) = ( ( Q ` i ) i^i ( 0 ..^ N ) ) -> ( ( ( P ` i ) i^i ( 0 ..^ N ) ) sadd ( { n e. NN0 | ( i e. A /\ ( n - i ) e. B ) } i^i ( 0 ..^ N ) ) ) = ( ( ( Q ` i ) i^i ( 0 ..^ N ) ) sadd ( { n e. NN0 | ( i e. A /\ ( n - i ) e. B ) } i^i ( 0 ..^ N ) ) ) ) | 
						
							| 59 | 58 | ineq1d |  |-  ( ( ( P ` i ) i^i ( 0 ..^ N ) ) = ( ( Q ` i ) i^i ( 0 ..^ N ) ) -> ( ( ( ( P ` i ) i^i ( 0 ..^ N ) ) sadd ( { n e. NN0 | ( i e. A /\ ( n - i ) e. B ) } i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) = ( ( ( ( Q ` i ) i^i ( 0 ..^ N ) ) sadd ( { n e. NN0 | ( i e. A /\ ( n - i ) e. B ) } i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) | 
						
							| 60 | 1 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> A C_ NN0 ) | 
						
							| 61 | 2 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> B C_ NN0 ) | 
						
							| 62 |  | elfzonn0 |  |-  ( i e. ( 0 ..^ N ) -> i e. NN0 ) | 
						
							| 63 | 62 | adantl |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> i e. NN0 ) | 
						
							| 64 | 60 61 4 63 | smupp1 |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( P ` ( i + 1 ) ) = ( ( P ` i ) sadd { n e. NN0 | ( i e. A /\ ( n - i ) e. B ) } ) ) | 
						
							| 65 | 64 | ineq1d |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( ( P ` ( i + 1 ) ) i^i ( 0 ..^ N ) ) = ( ( ( P ` i ) sadd { n e. NN0 | ( i e. A /\ ( n - i ) e. B ) } ) i^i ( 0 ..^ N ) ) ) | 
						
							| 66 | 1 2 4 | smupf |  |-  ( ph -> P : NN0 --> ~P NN0 ) | 
						
							| 67 |  | ffvelcdm |  |-  ( ( P : NN0 --> ~P NN0 /\ i e. NN0 ) -> ( P ` i ) e. ~P NN0 ) | 
						
							| 68 | 66 62 67 | syl2an |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( P ` i ) e. ~P NN0 ) | 
						
							| 69 | 68 | elpwid |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( P ` i ) C_ NN0 ) | 
						
							| 70 |  | ssrab2 |  |-  { n e. NN0 | ( i e. A /\ ( n - i ) e. B ) } C_ NN0 | 
						
							| 71 | 70 | a1i |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> { n e. NN0 | ( i e. A /\ ( n - i ) e. B ) } C_ NN0 ) | 
						
							| 72 | 3 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> N e. NN0 ) | 
						
							| 73 | 69 71 72 | sadeq |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( ( ( P ` i ) sadd { n e. NN0 | ( i e. A /\ ( n - i ) e. B ) } ) i^i ( 0 ..^ N ) ) = ( ( ( ( P ` i ) i^i ( 0 ..^ N ) ) sadd ( { n e. NN0 | ( i e. A /\ ( n - i ) e. B ) } i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) | 
						
							| 74 | 65 73 | eqtrd |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( ( P ` ( i + 1 ) ) i^i ( 0 ..^ N ) ) = ( ( ( ( P ` i ) i^i ( 0 ..^ N ) ) sadd ( { n e. NN0 | ( i e. A /\ ( n - i ) e. B ) } i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) | 
						
							| 75 | 53 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( B i^i ( 0 ..^ N ) ) C_ NN0 ) | 
						
							| 76 | 60 75 5 63 | smupp1 |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( Q ` ( i + 1 ) ) = ( ( Q ` i ) sadd { n e. NN0 | ( i e. A /\ ( n - i ) e. ( B i^i ( 0 ..^ N ) ) ) } ) ) | 
						
							| 77 | 76 | ineq1d |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( ( Q ` ( i + 1 ) ) i^i ( 0 ..^ N ) ) = ( ( ( Q ` i ) sadd { n e. NN0 | ( i e. A /\ ( n - i ) e. ( B i^i ( 0 ..^ N ) ) ) } ) i^i ( 0 ..^ N ) ) ) | 
						
							| 78 | 1 53 5 | smupf |  |-  ( ph -> Q : NN0 --> ~P NN0 ) | 
						
							| 79 |  | ffvelcdm |  |-  ( ( Q : NN0 --> ~P NN0 /\ i e. NN0 ) -> ( Q ` i ) e. ~P NN0 ) | 
						
							| 80 | 78 62 79 | syl2an |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( Q ` i ) e. ~P NN0 ) | 
						
							| 81 | 80 | elpwid |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( Q ` i ) C_ NN0 ) | 
						
							| 82 |  | ssrab2 |  |-  { n e. NN0 | ( i e. A /\ ( n - i ) e. ( B i^i ( 0 ..^ N ) ) ) } C_ NN0 | 
						
							| 83 | 82 | a1i |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> { n e. NN0 | ( i e. A /\ ( n - i ) e. ( B i^i ( 0 ..^ N ) ) ) } C_ NN0 ) | 
						
							| 84 | 81 83 72 | sadeq |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( ( ( Q ` i ) sadd { n e. NN0 | ( i e. A /\ ( n - i ) e. ( B i^i ( 0 ..^ N ) ) ) } ) i^i ( 0 ..^ N ) ) = ( ( ( ( Q ` i ) i^i ( 0 ..^ N ) ) sadd ( { n e. NN0 | ( i e. A /\ ( n - i ) e. ( B i^i ( 0 ..^ N ) ) ) } i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) | 
						
							| 85 |  | elinel2 |  |-  ( n e. ( NN0 i^i ( 0 ..^ N ) ) -> n e. ( 0 ..^ N ) ) | 
						
							| 86 | 61 | adantr |  |-  ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ n e. ( 0 ..^ N ) ) -> B C_ NN0 ) | 
						
							| 87 | 86 | sseld |  |-  ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ n e. ( 0 ..^ N ) ) -> ( ( n - i ) e. B -> ( n - i ) e. NN0 ) ) | 
						
							| 88 |  | elfzo0 |  |-  ( n e. ( 0 ..^ N ) <-> ( n e. NN0 /\ N e. NN /\ n < N ) ) | 
						
							| 89 | 88 | simp2bi |  |-  ( n e. ( 0 ..^ N ) -> N e. NN ) | 
						
							| 90 | 89 | adantl |  |-  ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ n e. ( 0 ..^ N ) ) -> N e. NN ) | 
						
							| 91 |  | elfzonn0 |  |-  ( n e. ( 0 ..^ N ) -> n e. NN0 ) | 
						
							| 92 | 91 | adantl |  |-  ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ n e. ( 0 ..^ N ) ) -> n e. NN0 ) | 
						
							| 93 | 92 | nn0red |  |-  ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ n e. ( 0 ..^ N ) ) -> n e. RR ) | 
						
							| 94 | 63 | adantr |  |-  ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ n e. ( 0 ..^ N ) ) -> i e. NN0 ) | 
						
							| 95 | 94 | nn0red |  |-  ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ n e. ( 0 ..^ N ) ) -> i e. RR ) | 
						
							| 96 | 93 95 | resubcld |  |-  ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ n e. ( 0 ..^ N ) ) -> ( n - i ) e. RR ) | 
						
							| 97 | 90 | nnred |  |-  ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ n e. ( 0 ..^ N ) ) -> N e. RR ) | 
						
							| 98 | 94 | nn0ge0d |  |-  ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ n e. ( 0 ..^ N ) ) -> 0 <_ i ) | 
						
							| 99 | 93 95 | subge02d |  |-  ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ n e. ( 0 ..^ N ) ) -> ( 0 <_ i <-> ( n - i ) <_ n ) ) | 
						
							| 100 | 98 99 | mpbid |  |-  ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ n e. ( 0 ..^ N ) ) -> ( n - i ) <_ n ) | 
						
							| 101 |  | elfzolt2 |  |-  ( n e. ( 0 ..^ N ) -> n < N ) | 
						
							| 102 | 101 | adantl |  |-  ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ n e. ( 0 ..^ N ) ) -> n < N ) | 
						
							| 103 | 96 93 97 100 102 | lelttrd |  |-  ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ n e. ( 0 ..^ N ) ) -> ( n - i ) < N ) | 
						
							| 104 | 90 103 | jca |  |-  ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ n e. ( 0 ..^ N ) ) -> ( N e. NN /\ ( n - i ) < N ) ) | 
						
							| 105 |  | elfzo0 |  |-  ( ( n - i ) e. ( 0 ..^ N ) <-> ( ( n - i ) e. NN0 /\ N e. NN /\ ( n - i ) < N ) ) | 
						
							| 106 |  | 3anass |  |-  ( ( ( n - i ) e. NN0 /\ N e. NN /\ ( n - i ) < N ) <-> ( ( n - i ) e. NN0 /\ ( N e. NN /\ ( n - i ) < N ) ) ) | 
						
							| 107 | 105 106 | bitri |  |-  ( ( n - i ) e. ( 0 ..^ N ) <-> ( ( n - i ) e. NN0 /\ ( N e. NN /\ ( n - i ) < N ) ) ) | 
						
							| 108 | 107 | baib |  |-  ( ( n - i ) e. NN0 -> ( ( n - i ) e. ( 0 ..^ N ) <-> ( N e. NN /\ ( n - i ) < N ) ) ) | 
						
							| 109 | 104 108 | syl5ibrcom |  |-  ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ n e. ( 0 ..^ N ) ) -> ( ( n - i ) e. NN0 -> ( n - i ) e. ( 0 ..^ N ) ) ) | 
						
							| 110 | 87 109 | syld |  |-  ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ n e. ( 0 ..^ N ) ) -> ( ( n - i ) e. B -> ( n - i ) e. ( 0 ..^ N ) ) ) | 
						
							| 111 | 110 | pm4.71rd |  |-  ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ n e. ( 0 ..^ N ) ) -> ( ( n - i ) e. B <-> ( ( n - i ) e. ( 0 ..^ N ) /\ ( n - i ) e. B ) ) ) | 
						
							| 112 |  | ancom |  |-  ( ( ( n - i ) e. ( 0 ..^ N ) /\ ( n - i ) e. B ) <-> ( ( n - i ) e. B /\ ( n - i ) e. ( 0 ..^ N ) ) ) | 
						
							| 113 |  | elin |  |-  ( ( n - i ) e. ( B i^i ( 0 ..^ N ) ) <-> ( ( n - i ) e. B /\ ( n - i ) e. ( 0 ..^ N ) ) ) | 
						
							| 114 | 112 113 | bitr4i |  |-  ( ( ( n - i ) e. ( 0 ..^ N ) /\ ( n - i ) e. B ) <-> ( n - i ) e. ( B i^i ( 0 ..^ N ) ) ) | 
						
							| 115 | 111 114 | bitr2di |  |-  ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ n e. ( 0 ..^ N ) ) -> ( ( n - i ) e. ( B i^i ( 0 ..^ N ) ) <-> ( n - i ) e. B ) ) | 
						
							| 116 | 115 | anbi2d |  |-  ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ n e. ( 0 ..^ N ) ) -> ( ( i e. A /\ ( n - i ) e. ( B i^i ( 0 ..^ N ) ) ) <-> ( i e. A /\ ( n - i ) e. B ) ) ) | 
						
							| 117 | 85 116 | sylan2 |  |-  ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ n e. ( NN0 i^i ( 0 ..^ N ) ) ) -> ( ( i e. A /\ ( n - i ) e. ( B i^i ( 0 ..^ N ) ) ) <-> ( i e. A /\ ( n - i ) e. B ) ) ) | 
						
							| 118 | 117 | rabbidva |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> { n e. ( NN0 i^i ( 0 ..^ N ) ) | ( i e. A /\ ( n - i ) e. ( B i^i ( 0 ..^ N ) ) ) } = { n e. ( NN0 i^i ( 0 ..^ N ) ) | ( i e. A /\ ( n - i ) e. B ) } ) | 
						
							| 119 |  | inrab2 |  |-  ( { n e. NN0 | ( i e. A /\ ( n - i ) e. ( B i^i ( 0 ..^ N ) ) ) } i^i ( 0 ..^ N ) ) = { n e. ( NN0 i^i ( 0 ..^ N ) ) | ( i e. A /\ ( n - i ) e. ( B i^i ( 0 ..^ N ) ) ) } | 
						
							| 120 |  | inrab2 |  |-  ( { n e. NN0 | ( i e. A /\ ( n - i ) e. B ) } i^i ( 0 ..^ N ) ) = { n e. ( NN0 i^i ( 0 ..^ N ) ) | ( i e. A /\ ( n - i ) e. B ) } | 
						
							| 121 | 118 119 120 | 3eqtr4g |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( { n e. NN0 | ( i e. A /\ ( n - i ) e. ( B i^i ( 0 ..^ N ) ) ) } i^i ( 0 ..^ N ) ) = ( { n e. NN0 | ( i e. A /\ ( n - i ) e. B ) } i^i ( 0 ..^ N ) ) ) | 
						
							| 122 | 121 | oveq2d |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( ( ( Q ` i ) i^i ( 0 ..^ N ) ) sadd ( { n e. NN0 | ( i e. A /\ ( n - i ) e. ( B i^i ( 0 ..^ N ) ) ) } i^i ( 0 ..^ N ) ) ) = ( ( ( Q ` i ) i^i ( 0 ..^ N ) ) sadd ( { n e. NN0 | ( i e. A /\ ( n - i ) e. B ) } i^i ( 0 ..^ N ) ) ) ) | 
						
							| 123 | 122 | ineq1d |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( ( ( ( Q ` i ) i^i ( 0 ..^ N ) ) sadd ( { n e. NN0 | ( i e. A /\ ( n - i ) e. ( B i^i ( 0 ..^ N ) ) ) } i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) = ( ( ( ( Q ` i ) i^i ( 0 ..^ N ) ) sadd ( { n e. NN0 | ( i e. A /\ ( n - i ) e. B ) } i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) | 
						
							| 124 | 77 84 123 | 3eqtrd |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( ( Q ` ( i + 1 ) ) i^i ( 0 ..^ N ) ) = ( ( ( ( Q ` i ) i^i ( 0 ..^ N ) ) sadd ( { n e. NN0 | ( i e. A /\ ( n - i ) e. B ) } i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) | 
						
							| 125 | 74 124 | eqeq12d |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( ( ( P ` ( i + 1 ) ) i^i ( 0 ..^ N ) ) = ( ( Q ` ( i + 1 ) ) i^i ( 0 ..^ N ) ) <-> ( ( ( ( P ` i ) i^i ( 0 ..^ N ) ) sadd ( { n e. NN0 | ( i e. A /\ ( n - i ) e. B ) } i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) = ( ( ( ( Q ` i ) i^i ( 0 ..^ N ) ) sadd ( { n e. NN0 | ( i e. A /\ ( n - i ) e. B ) } i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) ) | 
						
							| 126 | 59 125 | imbitrrid |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( ( ( P ` i ) i^i ( 0 ..^ N ) ) = ( ( Q ` i ) i^i ( 0 ..^ N ) ) -> ( ( P ` ( i + 1 ) ) i^i ( 0 ..^ N ) ) = ( ( Q ` ( i + 1 ) ) i^i ( 0 ..^ N ) ) ) ) | 
						
							| 127 | 126 | expcom |  |-  ( i e. ( 0 ..^ N ) -> ( ph -> ( ( ( P ` i ) i^i ( 0 ..^ N ) ) = ( ( Q ` i ) i^i ( 0 ..^ N ) ) -> ( ( P ` ( i + 1 ) ) i^i ( 0 ..^ N ) ) = ( ( Q ` ( i + 1 ) ) i^i ( 0 ..^ N ) ) ) ) ) | 
						
							| 128 | 127 | a2d |  |-  ( i e. ( 0 ..^ N ) -> ( ( ph -> ( ( P ` i ) i^i ( 0 ..^ N ) ) = ( ( Q ` i ) i^i ( 0 ..^ N ) ) ) -> ( ph -> ( ( P ` ( i + 1 ) ) i^i ( 0 ..^ N ) ) = ( ( Q ` ( i + 1 ) ) i^i ( 0 ..^ N ) ) ) ) ) | 
						
							| 129 | 32 38 44 50 57 128 | fzind2 |  |-  ( N e. ( 0 ... N ) -> ( ph -> ( ( P ` N ) i^i ( 0 ..^ N ) ) = ( ( Q ` N ) i^i ( 0 ..^ N ) ) ) ) | 
						
							| 130 | 26 129 | mpcom |  |-  ( ph -> ( ( P ` N ) i^i ( 0 ..^ N ) ) = ( ( Q ` N ) i^i ( 0 ..^ N ) ) ) | 
						
							| 131 | 130 | adantr |  |-  ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( ( P ` N ) i^i ( 0 ..^ N ) ) = ( ( Q ` N ) i^i ( 0 ..^ N ) ) ) | 
						
							| 132 | 131 | eleq2d |  |-  ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( k e. ( ( P ` N ) i^i ( 0 ..^ N ) ) <-> k e. ( ( Q ` N ) i^i ( 0 ..^ N ) ) ) ) | 
						
							| 133 |  | elin |  |-  ( k e. ( ( P ` N ) i^i ( 0 ..^ N ) ) <-> ( k e. ( P ` N ) /\ k e. ( 0 ..^ N ) ) ) | 
						
							| 134 | 133 | rbaib |  |-  ( k e. ( 0 ..^ N ) -> ( k e. ( ( P ` N ) i^i ( 0 ..^ N ) ) <-> k e. ( P ` N ) ) ) | 
						
							| 135 | 134 | adantl |  |-  ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( k e. ( ( P ` N ) i^i ( 0 ..^ N ) ) <-> k e. ( P ` N ) ) ) | 
						
							| 136 |  | elin |  |-  ( k e. ( ( Q ` N ) i^i ( 0 ..^ N ) ) <-> ( k e. ( Q ` N ) /\ k e. ( 0 ..^ N ) ) ) | 
						
							| 137 | 136 | rbaib |  |-  ( k e. ( 0 ..^ N ) -> ( k e. ( ( Q ` N ) i^i ( 0 ..^ N ) ) <-> k e. ( Q ` N ) ) ) | 
						
							| 138 | 137 | adantl |  |-  ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( k e. ( ( Q ` N ) i^i ( 0 ..^ N ) ) <-> k e. ( Q ` N ) ) ) | 
						
							| 139 | 132 135 138 | 3bitr3d |  |-  ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( k e. ( P ` N ) <-> k e. ( Q ` N ) ) ) | 
						
							| 140 | 53 | adantr |  |-  ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( B i^i ( 0 ..^ N ) ) C_ NN0 ) | 
						
							| 141 | 6 140 5 14 | smupval |  |-  ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( Q ` N ) = ( ( A i^i ( 0 ..^ N ) ) smul ( B i^i ( 0 ..^ N ) ) ) ) | 
						
							| 142 | 141 | eleq2d |  |-  ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( k e. ( Q ` N ) <-> k e. ( ( A i^i ( 0 ..^ N ) ) smul ( B i^i ( 0 ..^ N ) ) ) ) ) | 
						
							| 143 | 23 139 142 | 3bitrd |  |-  ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( k e. ( A smul B ) <-> k e. ( ( A i^i ( 0 ..^ N ) ) smul ( B i^i ( 0 ..^ N ) ) ) ) ) | 
						
							| 144 | 143 | ex |  |-  ( ph -> ( k e. ( 0 ..^ N ) -> ( k e. ( A smul B ) <-> k e. ( ( A i^i ( 0 ..^ N ) ) smul ( B i^i ( 0 ..^ N ) ) ) ) ) ) | 
						
							| 145 | 144 | pm5.32rd |  |-  ( ph -> ( ( k e. ( A smul B ) /\ k e. ( 0 ..^ N ) ) <-> ( k e. ( ( A i^i ( 0 ..^ N ) ) smul ( B i^i ( 0 ..^ N ) ) ) /\ k e. ( 0 ..^ N ) ) ) ) | 
						
							| 146 |  | elin |  |-  ( k e. ( ( A smul B ) i^i ( 0 ..^ N ) ) <-> ( k e. ( A smul B ) /\ k e. ( 0 ..^ N ) ) ) | 
						
							| 147 |  | elin |  |-  ( k e. ( ( ( A i^i ( 0 ..^ N ) ) smul ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) <-> ( k e. ( ( A i^i ( 0 ..^ N ) ) smul ( B i^i ( 0 ..^ N ) ) ) /\ k e. ( 0 ..^ N ) ) ) | 
						
							| 148 | 145 146 147 | 3bitr4g |  |-  ( ph -> ( k e. ( ( A smul B ) i^i ( 0 ..^ N ) ) <-> k e. ( ( ( A i^i ( 0 ..^ N ) ) smul ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) ) | 
						
							| 149 | 148 | eqrdv |  |-  ( ph -> ( ( A smul B ) i^i ( 0 ..^ N ) ) = ( ( ( A i^i ( 0 ..^ N ) ) smul ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) |