Step |
Hyp |
Ref |
Expression |
1 |
|
sadeq.a |
|- ( ph -> A C_ NN0 ) |
2 |
|
sadeq.b |
|- ( ph -> B C_ NN0 ) |
3 |
|
sadeq.n |
|- ( ph -> N e. NN0 ) |
4 |
|
inass |
|- ( ( A i^i ( 0 ..^ N ) ) i^i ( 0 ..^ N ) ) = ( A i^i ( ( 0 ..^ N ) i^i ( 0 ..^ N ) ) ) |
5 |
|
inidm |
|- ( ( 0 ..^ N ) i^i ( 0 ..^ N ) ) = ( 0 ..^ N ) |
6 |
5
|
ineq2i |
|- ( A i^i ( ( 0 ..^ N ) i^i ( 0 ..^ N ) ) ) = ( A i^i ( 0 ..^ N ) ) |
7 |
4 6
|
eqtri |
|- ( ( A i^i ( 0 ..^ N ) ) i^i ( 0 ..^ N ) ) = ( A i^i ( 0 ..^ N ) ) |
8 |
7
|
fveq2i |
|- ( `' ( bits |` NN0 ) ` ( ( A i^i ( 0 ..^ N ) ) i^i ( 0 ..^ N ) ) ) = ( `' ( bits |` NN0 ) ` ( A i^i ( 0 ..^ N ) ) ) |
9 |
|
inass |
|- ( ( B i^i ( 0 ..^ N ) ) i^i ( 0 ..^ N ) ) = ( B i^i ( ( 0 ..^ N ) i^i ( 0 ..^ N ) ) ) |
10 |
5
|
ineq2i |
|- ( B i^i ( ( 0 ..^ N ) i^i ( 0 ..^ N ) ) ) = ( B i^i ( 0 ..^ N ) ) |
11 |
9 10
|
eqtri |
|- ( ( B i^i ( 0 ..^ N ) ) i^i ( 0 ..^ N ) ) = ( B i^i ( 0 ..^ N ) ) |
12 |
11
|
fveq2i |
|- ( `' ( bits |` NN0 ) ` ( ( B i^i ( 0 ..^ N ) ) i^i ( 0 ..^ N ) ) ) = ( `' ( bits |` NN0 ) ` ( B i^i ( 0 ..^ N ) ) ) |
13 |
8 12
|
oveq12i |
|- ( ( `' ( bits |` NN0 ) ` ( ( A i^i ( 0 ..^ N ) ) i^i ( 0 ..^ N ) ) ) + ( `' ( bits |` NN0 ) ` ( ( B i^i ( 0 ..^ N ) ) i^i ( 0 ..^ N ) ) ) ) = ( ( `' ( bits |` NN0 ) ` ( A i^i ( 0 ..^ N ) ) ) + ( `' ( bits |` NN0 ) ` ( B i^i ( 0 ..^ N ) ) ) ) |
14 |
13
|
oveq1i |
|- ( ( ( `' ( bits |` NN0 ) ` ( ( A i^i ( 0 ..^ N ) ) i^i ( 0 ..^ N ) ) ) + ( `' ( bits |` NN0 ) ` ( ( B i^i ( 0 ..^ N ) ) i^i ( 0 ..^ N ) ) ) ) mod ( 2 ^ N ) ) = ( ( ( `' ( bits |` NN0 ) ` ( A i^i ( 0 ..^ N ) ) ) + ( `' ( bits |` NN0 ) ` ( B i^i ( 0 ..^ N ) ) ) ) mod ( 2 ^ N ) ) |
15 |
|
inss1 |
|- ( A i^i ( 0 ..^ N ) ) C_ A |
16 |
15 1
|
sstrid |
|- ( ph -> ( A i^i ( 0 ..^ N ) ) C_ NN0 ) |
17 |
|
inss1 |
|- ( B i^i ( 0 ..^ N ) ) C_ B |
18 |
17 2
|
sstrid |
|- ( ph -> ( B i^i ( 0 ..^ N ) ) C_ NN0 ) |
19 |
|
eqid |
|- seq 0 ( ( c e. 2o , m e. NN0 |-> if ( cadd ( m e. ( A i^i ( 0 ..^ N ) ) , m e. ( B i^i ( 0 ..^ N ) ) , (/) e. c ) , 1o , (/) ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) = seq 0 ( ( c e. 2o , m e. NN0 |-> if ( cadd ( m e. ( A i^i ( 0 ..^ N ) ) , m e. ( B i^i ( 0 ..^ N ) ) , (/) e. c ) , 1o , (/) ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) |
20 |
|
eqid |
|- `' ( bits |` NN0 ) = `' ( bits |` NN0 ) |
21 |
16 18 19 3 20
|
sadadd3 |
|- ( ph -> ( ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) mod ( 2 ^ N ) ) = ( ( ( `' ( bits |` NN0 ) ` ( ( A i^i ( 0 ..^ N ) ) i^i ( 0 ..^ N ) ) ) + ( `' ( bits |` NN0 ) ` ( ( B i^i ( 0 ..^ N ) ) i^i ( 0 ..^ N ) ) ) ) mod ( 2 ^ N ) ) ) |
22 |
|
eqid |
|- seq 0 ( ( c e. 2o , m e. NN0 |-> if ( cadd ( m e. A , m e. B , (/) e. c ) , 1o , (/) ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) = seq 0 ( ( c e. 2o , m e. NN0 |-> if ( cadd ( m e. A , m e. B , (/) e. c ) , 1o , (/) ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) |
23 |
1 2 22 3 20
|
sadadd3 |
|- ( ph -> ( ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) mod ( 2 ^ N ) ) = ( ( ( `' ( bits |` NN0 ) ` ( A i^i ( 0 ..^ N ) ) ) + ( `' ( bits |` NN0 ) ` ( B i^i ( 0 ..^ N ) ) ) ) mod ( 2 ^ N ) ) ) |
24 |
14 21 23
|
3eqtr4a |
|- ( ph -> ( ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) mod ( 2 ^ N ) ) = ( ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) mod ( 2 ^ N ) ) ) |
25 |
|
inss1 |
|- ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) C_ ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) |
26 |
|
sadcl |
|- ( ( ( A i^i ( 0 ..^ N ) ) C_ NN0 /\ ( B i^i ( 0 ..^ N ) ) C_ NN0 ) -> ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) C_ NN0 ) |
27 |
16 18 26
|
syl2anc |
|- ( ph -> ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) C_ NN0 ) |
28 |
25 27
|
sstrid |
|- ( ph -> ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) C_ NN0 ) |
29 |
|
fzofi |
|- ( 0 ..^ N ) e. Fin |
30 |
29
|
a1i |
|- ( ph -> ( 0 ..^ N ) e. Fin ) |
31 |
|
inss2 |
|- ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) C_ ( 0 ..^ N ) |
32 |
|
ssfi |
|- ( ( ( 0 ..^ N ) e. Fin /\ ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) C_ ( 0 ..^ N ) ) -> ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) e. Fin ) |
33 |
30 31 32
|
sylancl |
|- ( ph -> ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) e. Fin ) |
34 |
|
elfpw |
|- ( ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) <-> ( ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) C_ NN0 /\ ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) e. Fin ) ) |
35 |
28 33 34
|
sylanbrc |
|- ( ph -> ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) ) |
36 |
|
bitsf1o |
|- ( bits |` NN0 ) : NN0 -1-1-onto-> ( ~P NN0 i^i Fin ) |
37 |
|
f1ocnv |
|- ( ( bits |` NN0 ) : NN0 -1-1-onto-> ( ~P NN0 i^i Fin ) -> `' ( bits |` NN0 ) : ( ~P NN0 i^i Fin ) -1-1-onto-> NN0 ) |
38 |
|
f1of |
|- ( `' ( bits |` NN0 ) : ( ~P NN0 i^i Fin ) -1-1-onto-> NN0 -> `' ( bits |` NN0 ) : ( ~P NN0 i^i Fin ) --> NN0 ) |
39 |
36 37 38
|
mp2b |
|- `' ( bits |` NN0 ) : ( ~P NN0 i^i Fin ) --> NN0 |
40 |
39
|
ffvelrni |
|- ( ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) -> ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) e. NN0 ) |
41 |
35 40
|
syl |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) e. NN0 ) |
42 |
41
|
nn0red |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) e. RR ) |
43 |
|
2rp |
|- 2 e. RR+ |
44 |
43
|
a1i |
|- ( ph -> 2 e. RR+ ) |
45 |
3
|
nn0zd |
|- ( ph -> N e. ZZ ) |
46 |
44 45
|
rpexpcld |
|- ( ph -> ( 2 ^ N ) e. RR+ ) |
47 |
41
|
nn0ge0d |
|- ( ph -> 0 <_ ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) ) |
48 |
41
|
fvresd |
|- ( ph -> ( ( bits |` NN0 ) ` ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) ) = ( bits ` ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) ) ) |
49 |
|
f1ocnvfv2 |
|- ( ( ( bits |` NN0 ) : NN0 -1-1-onto-> ( ~P NN0 i^i Fin ) /\ ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) ) -> ( ( bits |` NN0 ) ` ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) ) = ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) |
50 |
36 35 49
|
sylancr |
|- ( ph -> ( ( bits |` NN0 ) ` ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) ) = ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) |
51 |
48 50
|
eqtr3d |
|- ( ph -> ( bits ` ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) ) = ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) |
52 |
51 31
|
eqsstrdi |
|- ( ph -> ( bits ` ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) ) C_ ( 0 ..^ N ) ) |
53 |
41
|
nn0zd |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) e. ZZ ) |
54 |
|
bitsfzo |
|- ( ( ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) e. ZZ /\ N e. NN0 ) -> ( ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) e. ( 0 ..^ ( 2 ^ N ) ) <-> ( bits ` ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) ) C_ ( 0 ..^ N ) ) ) |
55 |
53 3 54
|
syl2anc |
|- ( ph -> ( ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) e. ( 0 ..^ ( 2 ^ N ) ) <-> ( bits ` ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) ) C_ ( 0 ..^ N ) ) ) |
56 |
52 55
|
mpbird |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) e. ( 0 ..^ ( 2 ^ N ) ) ) |
57 |
|
elfzolt2 |
|- ( ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) e. ( 0 ..^ ( 2 ^ N ) ) -> ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) < ( 2 ^ N ) ) |
58 |
56 57
|
syl |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) < ( 2 ^ N ) ) |
59 |
|
modid |
|- ( ( ( ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) e. RR /\ ( 2 ^ N ) e. RR+ ) /\ ( 0 <_ ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) /\ ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) < ( 2 ^ N ) ) ) -> ( ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) mod ( 2 ^ N ) ) = ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) ) |
60 |
42 46 47 58 59
|
syl22anc |
|- ( ph -> ( ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) mod ( 2 ^ N ) ) = ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) ) |
61 |
|
inss1 |
|- ( ( A sadd B ) i^i ( 0 ..^ N ) ) C_ ( A sadd B ) |
62 |
|
sadcl |
|- ( ( A C_ NN0 /\ B C_ NN0 ) -> ( A sadd B ) C_ NN0 ) |
63 |
1 2 62
|
syl2anc |
|- ( ph -> ( A sadd B ) C_ NN0 ) |
64 |
61 63
|
sstrid |
|- ( ph -> ( ( A sadd B ) i^i ( 0 ..^ N ) ) C_ NN0 ) |
65 |
|
inss2 |
|- ( ( A sadd B ) i^i ( 0 ..^ N ) ) C_ ( 0 ..^ N ) |
66 |
|
ssfi |
|- ( ( ( 0 ..^ N ) e. Fin /\ ( ( A sadd B ) i^i ( 0 ..^ N ) ) C_ ( 0 ..^ N ) ) -> ( ( A sadd B ) i^i ( 0 ..^ N ) ) e. Fin ) |
67 |
30 65 66
|
sylancl |
|- ( ph -> ( ( A sadd B ) i^i ( 0 ..^ N ) ) e. Fin ) |
68 |
|
elfpw |
|- ( ( ( A sadd B ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) <-> ( ( ( A sadd B ) i^i ( 0 ..^ N ) ) C_ NN0 /\ ( ( A sadd B ) i^i ( 0 ..^ N ) ) e. Fin ) ) |
69 |
64 67 68
|
sylanbrc |
|- ( ph -> ( ( A sadd B ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) ) |
70 |
39
|
ffvelrni |
|- ( ( ( A sadd B ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) -> ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) e. NN0 ) |
71 |
69 70
|
syl |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) e. NN0 ) |
72 |
71
|
nn0red |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) e. RR ) |
73 |
71
|
nn0ge0d |
|- ( ph -> 0 <_ ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) ) |
74 |
71
|
fvresd |
|- ( ph -> ( ( bits |` NN0 ) ` ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) ) = ( bits ` ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) ) ) |
75 |
|
f1ocnvfv2 |
|- ( ( ( bits |` NN0 ) : NN0 -1-1-onto-> ( ~P NN0 i^i Fin ) /\ ( ( A sadd B ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) ) -> ( ( bits |` NN0 ) ` ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) ) = ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) |
76 |
36 69 75
|
sylancr |
|- ( ph -> ( ( bits |` NN0 ) ` ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) ) = ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) |
77 |
74 76
|
eqtr3d |
|- ( ph -> ( bits ` ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) ) = ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) |
78 |
77 65
|
eqsstrdi |
|- ( ph -> ( bits ` ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) ) C_ ( 0 ..^ N ) ) |
79 |
71
|
nn0zd |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) e. ZZ ) |
80 |
|
bitsfzo |
|- ( ( ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) e. ZZ /\ N e. NN0 ) -> ( ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) e. ( 0 ..^ ( 2 ^ N ) ) <-> ( bits ` ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) ) C_ ( 0 ..^ N ) ) ) |
81 |
79 3 80
|
syl2anc |
|- ( ph -> ( ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) e. ( 0 ..^ ( 2 ^ N ) ) <-> ( bits ` ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) ) C_ ( 0 ..^ N ) ) ) |
82 |
78 81
|
mpbird |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) e. ( 0 ..^ ( 2 ^ N ) ) ) |
83 |
|
elfzolt2 |
|- ( ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) e. ( 0 ..^ ( 2 ^ N ) ) -> ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) < ( 2 ^ N ) ) |
84 |
82 83
|
syl |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) < ( 2 ^ N ) ) |
85 |
|
modid |
|- ( ( ( ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) e. RR /\ ( 2 ^ N ) e. RR+ ) /\ ( 0 <_ ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) /\ ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) < ( 2 ^ N ) ) ) -> ( ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) mod ( 2 ^ N ) ) = ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) ) |
86 |
72 46 73 84 85
|
syl22anc |
|- ( ph -> ( ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) mod ( 2 ^ N ) ) = ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) ) |
87 |
24 60 86
|
3eqtr3rd |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) = ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) ) |
88 |
|
f1of1 |
|- ( `' ( bits |` NN0 ) : ( ~P NN0 i^i Fin ) -1-1-onto-> NN0 -> `' ( bits |` NN0 ) : ( ~P NN0 i^i Fin ) -1-1-> NN0 ) |
89 |
36 37 88
|
mp2b |
|- `' ( bits |` NN0 ) : ( ~P NN0 i^i Fin ) -1-1-> NN0 |
90 |
|
f1fveq |
|- ( ( `' ( bits |` NN0 ) : ( ~P NN0 i^i Fin ) -1-1-> NN0 /\ ( ( ( A sadd B ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) /\ ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) ) ) -> ( ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) = ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) <-> ( ( A sadd B ) i^i ( 0 ..^ N ) ) = ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) ) |
91 |
89 90
|
mpan |
|- ( ( ( ( A sadd B ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) /\ ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) ) -> ( ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) = ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) <-> ( ( A sadd B ) i^i ( 0 ..^ N ) ) = ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) ) |
92 |
69 35 91
|
syl2anc |
|- ( ph -> ( ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) = ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) <-> ( ( A sadd B ) i^i ( 0 ..^ N ) ) = ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) ) |
93 |
87 92
|
mpbid |
|- ( ph -> ( ( A sadd B ) i^i ( 0 ..^ N ) ) = ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) |