| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smuval.a |  |-  ( ph -> A C_ NN0 ) | 
						
							| 2 |  | smuval.b |  |-  ( ph -> B C_ NN0 ) | 
						
							| 3 |  | smuval.p |  |-  P = seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. A /\ ( n - m ) e. B ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) | 
						
							| 4 |  | 0z |  |-  0 e. ZZ | 
						
							| 5 | 3 | fveq1i |  |-  ( P ` 0 ) = ( seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. A /\ ( n - m ) e. B ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) ` 0 ) | 
						
							| 6 |  | seq1 |  |-  ( 0 e. ZZ -> ( seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. A /\ ( n - m ) e. B ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) ` 0 ) = ( ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ` 0 ) ) | 
						
							| 7 | 5 6 | eqtrid |  |-  ( 0 e. ZZ -> ( P ` 0 ) = ( ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ` 0 ) ) | 
						
							| 8 | 4 7 | mp1i |  |-  ( ph -> ( P ` 0 ) = ( ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ` 0 ) ) | 
						
							| 9 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 10 |  | iftrue |  |-  ( n = 0 -> if ( n = 0 , (/) , ( n - 1 ) ) = (/) ) | 
						
							| 11 |  | eqid |  |-  ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) = ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) | 
						
							| 12 |  | 0ex |  |-  (/) e. _V | 
						
							| 13 | 10 11 12 | fvmpt |  |-  ( 0 e. NN0 -> ( ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ` 0 ) = (/) ) | 
						
							| 14 | 9 13 | mp1i |  |-  ( ph -> ( ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ` 0 ) = (/) ) | 
						
							| 15 | 8 14 | eqtrd |  |-  ( ph -> ( P ` 0 ) = (/) ) |