Metamath Proof Explorer


Theorem smup0

Description: The initial element of the partial sum sequence. (Contributed by Mario Carneiro, 9-Sep-2016)

Ref Expression
Hypotheses smuval.a φ A 0
smuval.b φ B 0
smuval.p P = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1
Assertion smup0 φ P 0 =

Proof

Step Hyp Ref Expression
1 smuval.a φ A 0
2 smuval.b φ B 0
3 smuval.p P = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1
4 0z 0
5 3 fveq1i P 0 = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1 0
6 seq1 0 seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1 0 = n 0 if n = 0 n 1 0
7 5 6 eqtrid 0 P 0 = n 0 if n = 0 n 1 0
8 4 7 mp1i φ P 0 = n 0 if n = 0 n 1 0
9 0nn0 0 0
10 iftrue n = 0 if n = 0 n 1 =
11 eqid n 0 if n = 0 n 1 = n 0 if n = 0 n 1
12 0ex V
13 10 11 12 fvmpt 0 0 n 0 if n = 0 n 1 0 =
14 9 13 mp1i φ n 0 if n = 0 n 1 0 =
15 8 14 eqtrd φ P 0 =