Metamath Proof Explorer


Theorem smup0

Description: The initial element of the partial sum sequence. (Contributed by Mario Carneiro, 9-Sep-2016)

Ref Expression
Hypotheses smuval.a φA0
smuval.b φB0
smuval.p P=seq0p𝒫0,m0psaddn0|mAnmBn0ifn=0n1
Assertion smup0 φP0=

Proof

Step Hyp Ref Expression
1 smuval.a φA0
2 smuval.b φB0
3 smuval.p P=seq0p𝒫0,m0psaddn0|mAnmBn0ifn=0n1
4 0z 0
5 3 fveq1i P0=seq0p𝒫0,m0psaddn0|mAnmBn0ifn=0n10
6 seq1 0seq0p𝒫0,m0psaddn0|mAnmBn0ifn=0n10=n0ifn=0n10
7 5 6 eqtrid 0P0=n0ifn=0n10
8 4 7 mp1i φP0=n0ifn=0n10
9 0nn0 00
10 iftrue n=0ifn=0n1=
11 eqid n0ifn=0n1=n0ifn=0n1
12 0ex V
13 10 11 12 fvmpt 00n0ifn=0n10=
14 9 13 mp1i φn0ifn=0n10=
15 8 14 eqtrd φP0=