Step |
Hyp |
Ref |
Expression |
1 |
|
smuval.a |
|
2 |
|
smuval.b |
|
3 |
|
smuval.p |
|
4 |
|
smuval.n |
|
5 |
|
nn0uz |
|
6 |
4 5
|
eleqtrdi |
|
7 |
|
seqp1 |
|
8 |
6 7
|
syl |
|
9 |
3
|
fveq1i |
|
10 |
3
|
fveq1i |
|
11 |
10
|
oveq1i |
|
12 |
8 9 11
|
3eqtr4g |
|
13 |
|
1nn0 |
|
14 |
13
|
a1i |
|
15 |
4 14
|
nn0addcld |
|
16 |
|
eqeq1 |
|
17 |
|
oveq1 |
|
18 |
16 17
|
ifbieq2d |
|
19 |
|
eqid |
|
20 |
|
0ex |
|
21 |
|
ovex |
|
22 |
20 21
|
ifex |
|
23 |
18 19 22
|
fvmpt |
|
24 |
15 23
|
syl |
|
25 |
|
nn0p1nn |
|
26 |
4 25
|
syl |
|
27 |
26
|
nnne0d |
|
28 |
|
ifnefalse |
|
29 |
27 28
|
syl |
|
30 |
4
|
nn0cnd |
|
31 |
14
|
nn0cnd |
|
32 |
30 31
|
pncand |
|
33 |
24 29 32
|
3eqtrd |
|
34 |
33
|
oveq2d |
|
35 |
1 2 3
|
smupf |
|
36 |
35 4
|
ffvelrnd |
|
37 |
|
simpl |
|
38 |
|
simpr |
|
39 |
38
|
eleq1d |
|
40 |
38
|
oveq2d |
|
41 |
40
|
eleq1d |
|
42 |
39 41
|
anbi12d |
|
43 |
42
|
rabbidv |
|
44 |
|
oveq1 |
|
45 |
44
|
eleq1d |
|
46 |
45
|
anbi2d |
|
47 |
46
|
cbvrabv |
|
48 |
43 47
|
eqtrdi |
|
49 |
37 48
|
oveq12d |
|
50 |
|
oveq1 |
|
51 |
|
eleq1w |
|
52 |
|
oveq2 |
|
53 |
52
|
eleq1d |
|
54 |
51 53
|
anbi12d |
|
55 |
54
|
rabbidv |
|
56 |
|
oveq1 |
|
57 |
56
|
eleq1d |
|
58 |
57
|
anbi2d |
|
59 |
58
|
cbvrabv |
|
60 |
55 59
|
eqtr4di |
|
61 |
60
|
oveq2d |
|
62 |
50 61
|
cbvmpov |
|
63 |
|
ovex |
|
64 |
49 62 63
|
ovmpoa |
|
65 |
36 4 64
|
syl2anc |
|
66 |
12 34 65
|
3eqtrd |
|