| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smuval.a | ⊢ ( 𝜑  →  𝐴  ⊆  ℕ0 ) | 
						
							| 2 |  | smuval.b | ⊢ ( 𝜑  →  𝐵  ⊆  ℕ0 ) | 
						
							| 3 |  | smuval.p | ⊢ 𝑃  =  seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) | 
						
							| 4 |  | smuval.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 5 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 6 | 4 5 | eleqtrdi | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 7 |  | seqp1 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 0 )  →  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ ( 𝑁  +  1 ) )  =  ( ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 𝑁 ) ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ( ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 8 | 6 7 | syl | ⊢ ( 𝜑  →  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ ( 𝑁  +  1 ) )  =  ( ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 𝑁 ) ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ( ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 9 | 3 | fveq1i | ⊢ ( 𝑃 ‘ ( 𝑁  +  1 ) )  =  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ ( 𝑁  +  1 ) ) | 
						
							| 10 | 3 | fveq1i | ⊢ ( 𝑃 ‘ 𝑁 )  =  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 𝑁 ) | 
						
							| 11 | 10 | oveq1i | ⊢ ( ( 𝑃 ‘ 𝑁 ) ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ( ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ‘ ( 𝑁  +  1 ) ) )  =  ( ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 𝑁 ) ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ( ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ‘ ( 𝑁  +  1 ) ) ) | 
						
							| 12 | 8 9 11 | 3eqtr4g | ⊢ ( 𝜑  →  ( 𝑃 ‘ ( 𝑁  +  1 ) )  =  ( ( 𝑃 ‘ 𝑁 ) ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ( ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 13 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 14 | 13 | a1i | ⊢ ( 𝜑  →  1  ∈  ℕ0 ) | 
						
							| 15 | 4 14 | nn0addcld | ⊢ ( 𝜑  →  ( 𝑁  +  1 )  ∈  ℕ0 ) | 
						
							| 16 |  | eqeq1 | ⊢ ( 𝑛  =  ( 𝑁  +  1 )  →  ( 𝑛  =  0  ↔  ( 𝑁  +  1 )  =  0 ) ) | 
						
							| 17 |  | oveq1 | ⊢ ( 𝑛  =  ( 𝑁  +  1 )  →  ( 𝑛  −  1 )  =  ( ( 𝑁  +  1 )  −  1 ) ) | 
						
							| 18 | 16 17 | ifbieq2d | ⊢ ( 𝑛  =  ( 𝑁  +  1 )  →  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) )  =  if ( ( 𝑁  +  1 )  =  0 ,  ∅ ,  ( ( 𝑁  +  1 )  −  1 ) ) ) | 
						
							| 19 |  | eqid | ⊢ ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) | 
						
							| 20 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 21 |  | ovex | ⊢ ( ( 𝑁  +  1 )  −  1 )  ∈  V | 
						
							| 22 | 20 21 | ifex | ⊢ if ( ( 𝑁  +  1 )  =  0 ,  ∅ ,  ( ( 𝑁  +  1 )  −  1 ) )  ∈  V | 
						
							| 23 | 18 19 22 | fvmpt | ⊢ ( ( 𝑁  +  1 )  ∈  ℕ0  →  ( ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ‘ ( 𝑁  +  1 ) )  =  if ( ( 𝑁  +  1 )  =  0 ,  ∅ ,  ( ( 𝑁  +  1 )  −  1 ) ) ) | 
						
							| 24 | 15 23 | syl | ⊢ ( 𝜑  →  ( ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ‘ ( 𝑁  +  1 ) )  =  if ( ( 𝑁  +  1 )  =  0 ,  ∅ ,  ( ( 𝑁  +  1 )  −  1 ) ) ) | 
						
							| 25 |  | nn0p1nn | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  ∈  ℕ ) | 
						
							| 26 | 4 25 | syl | ⊢ ( 𝜑  →  ( 𝑁  +  1 )  ∈  ℕ ) | 
						
							| 27 | 26 | nnne0d | ⊢ ( 𝜑  →  ( 𝑁  +  1 )  ≠  0 ) | 
						
							| 28 |  | ifnefalse | ⊢ ( ( 𝑁  +  1 )  ≠  0  →  if ( ( 𝑁  +  1 )  =  0 ,  ∅ ,  ( ( 𝑁  +  1 )  −  1 ) )  =  ( ( 𝑁  +  1 )  −  1 ) ) | 
						
							| 29 | 27 28 | syl | ⊢ ( 𝜑  →  if ( ( 𝑁  +  1 )  =  0 ,  ∅ ,  ( ( 𝑁  +  1 )  −  1 ) )  =  ( ( 𝑁  +  1 )  −  1 ) ) | 
						
							| 30 | 4 | nn0cnd | ⊢ ( 𝜑  →  𝑁  ∈  ℂ ) | 
						
							| 31 | 14 | nn0cnd | ⊢ ( 𝜑  →  1  ∈  ℂ ) | 
						
							| 32 | 30 31 | pncand | ⊢ ( 𝜑  →  ( ( 𝑁  +  1 )  −  1 )  =  𝑁 ) | 
						
							| 33 | 24 29 32 | 3eqtrd | ⊢ ( 𝜑  →  ( ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ‘ ( 𝑁  +  1 ) )  =  𝑁 ) | 
						
							| 34 | 33 | oveq2d | ⊢ ( 𝜑  →  ( ( 𝑃 ‘ 𝑁 ) ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ( ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ‘ ( 𝑁  +  1 ) ) )  =  ( ( 𝑃 ‘ 𝑁 ) ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) 𝑁 ) ) | 
						
							| 35 | 1 2 3 | smupf | ⊢ ( 𝜑  →  𝑃 : ℕ0 ⟶ 𝒫  ℕ0 ) | 
						
							| 36 | 35 4 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝑃 ‘ 𝑁 )  ∈  𝒫  ℕ0 ) | 
						
							| 37 |  | simpl | ⊢ ( ( 𝑥  =  ( 𝑃 ‘ 𝑁 )  ∧  𝑦  =  𝑁 )  →  𝑥  =  ( 𝑃 ‘ 𝑁 ) ) | 
						
							| 38 |  | simpr | ⊢ ( ( 𝑥  =  ( 𝑃 ‘ 𝑁 )  ∧  𝑦  =  𝑁 )  →  𝑦  =  𝑁 ) | 
						
							| 39 | 38 | eleq1d | ⊢ ( ( 𝑥  =  ( 𝑃 ‘ 𝑁 )  ∧  𝑦  =  𝑁 )  →  ( 𝑦  ∈  𝐴  ↔  𝑁  ∈  𝐴 ) ) | 
						
							| 40 | 38 | oveq2d | ⊢ ( ( 𝑥  =  ( 𝑃 ‘ 𝑁 )  ∧  𝑦  =  𝑁 )  →  ( 𝑘  −  𝑦 )  =  ( 𝑘  −  𝑁 ) ) | 
						
							| 41 | 40 | eleq1d | ⊢ ( ( 𝑥  =  ( 𝑃 ‘ 𝑁 )  ∧  𝑦  =  𝑁 )  →  ( ( 𝑘  −  𝑦 )  ∈  𝐵  ↔  ( 𝑘  −  𝑁 )  ∈  𝐵 ) ) | 
						
							| 42 | 39 41 | anbi12d | ⊢ ( ( 𝑥  =  ( 𝑃 ‘ 𝑁 )  ∧  𝑦  =  𝑁 )  →  ( ( 𝑦  ∈  𝐴  ∧  ( 𝑘  −  𝑦 )  ∈  𝐵 )  ↔  ( 𝑁  ∈  𝐴  ∧  ( 𝑘  −  𝑁 )  ∈  𝐵 ) ) ) | 
						
							| 43 | 42 | rabbidv | ⊢ ( ( 𝑥  =  ( 𝑃 ‘ 𝑁 )  ∧  𝑦  =  𝑁 )  →  { 𝑘  ∈  ℕ0  ∣  ( 𝑦  ∈  𝐴  ∧  ( 𝑘  −  𝑦 )  ∈  𝐵 ) }  =  { 𝑘  ∈  ℕ0  ∣  ( 𝑁  ∈  𝐴  ∧  ( 𝑘  −  𝑁 )  ∈  𝐵 ) } ) | 
						
							| 44 |  | oveq1 | ⊢ ( 𝑘  =  𝑛  →  ( 𝑘  −  𝑁 )  =  ( 𝑛  −  𝑁 ) ) | 
						
							| 45 | 44 | eleq1d | ⊢ ( 𝑘  =  𝑛  →  ( ( 𝑘  −  𝑁 )  ∈  𝐵  ↔  ( 𝑛  −  𝑁 )  ∈  𝐵 ) ) | 
						
							| 46 | 45 | anbi2d | ⊢ ( 𝑘  =  𝑛  →  ( ( 𝑁  ∈  𝐴  ∧  ( 𝑘  −  𝑁 )  ∈  𝐵 )  ↔  ( 𝑁  ∈  𝐴  ∧  ( 𝑛  −  𝑁 )  ∈  𝐵 ) ) ) | 
						
							| 47 | 46 | cbvrabv | ⊢ { 𝑘  ∈  ℕ0  ∣  ( 𝑁  ∈  𝐴  ∧  ( 𝑘  −  𝑁 )  ∈  𝐵 ) }  =  { 𝑛  ∈  ℕ0  ∣  ( 𝑁  ∈  𝐴  ∧  ( 𝑛  −  𝑁 )  ∈  𝐵 ) } | 
						
							| 48 | 43 47 | eqtrdi | ⊢ ( ( 𝑥  =  ( 𝑃 ‘ 𝑁 )  ∧  𝑦  =  𝑁 )  →  { 𝑘  ∈  ℕ0  ∣  ( 𝑦  ∈  𝐴  ∧  ( 𝑘  −  𝑦 )  ∈  𝐵 ) }  =  { 𝑛  ∈  ℕ0  ∣  ( 𝑁  ∈  𝐴  ∧  ( 𝑛  −  𝑁 )  ∈  𝐵 ) } ) | 
						
							| 49 | 37 48 | oveq12d | ⊢ ( ( 𝑥  =  ( 𝑃 ‘ 𝑁 )  ∧  𝑦  =  𝑁 )  →  ( 𝑥  sadd  { 𝑘  ∈  ℕ0  ∣  ( 𝑦  ∈  𝐴  ∧  ( 𝑘  −  𝑦 )  ∈  𝐵 ) } )  =  ( ( 𝑃 ‘ 𝑁 )  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑁  ∈  𝐴  ∧  ( 𝑛  −  𝑁 )  ∈  𝐵 ) } ) ) | 
						
							| 50 |  | oveq1 | ⊢ ( 𝑝  =  𝑥  →  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } )  =  ( 𝑥  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) | 
						
							| 51 |  | eleq1w | ⊢ ( 𝑚  =  𝑦  →  ( 𝑚  ∈  𝐴  ↔  𝑦  ∈  𝐴 ) ) | 
						
							| 52 |  | oveq2 | ⊢ ( 𝑚  =  𝑦  →  ( 𝑛  −  𝑚 )  =  ( 𝑛  −  𝑦 ) ) | 
						
							| 53 | 52 | eleq1d | ⊢ ( 𝑚  =  𝑦  →  ( ( 𝑛  −  𝑚 )  ∈  𝐵  ↔  ( 𝑛  −  𝑦 )  ∈  𝐵 ) ) | 
						
							| 54 | 51 53 | anbi12d | ⊢ ( 𝑚  =  𝑦  →  ( ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 )  ↔  ( 𝑦  ∈  𝐴  ∧  ( 𝑛  −  𝑦 )  ∈  𝐵 ) ) ) | 
						
							| 55 | 54 | rabbidv | ⊢ ( 𝑚  =  𝑦  →  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) }  =  { 𝑛  ∈  ℕ0  ∣  ( 𝑦  ∈  𝐴  ∧  ( 𝑛  −  𝑦 )  ∈  𝐵 ) } ) | 
						
							| 56 |  | oveq1 | ⊢ ( 𝑘  =  𝑛  →  ( 𝑘  −  𝑦 )  =  ( 𝑛  −  𝑦 ) ) | 
						
							| 57 | 56 | eleq1d | ⊢ ( 𝑘  =  𝑛  →  ( ( 𝑘  −  𝑦 )  ∈  𝐵  ↔  ( 𝑛  −  𝑦 )  ∈  𝐵 ) ) | 
						
							| 58 | 57 | anbi2d | ⊢ ( 𝑘  =  𝑛  →  ( ( 𝑦  ∈  𝐴  ∧  ( 𝑘  −  𝑦 )  ∈  𝐵 )  ↔  ( 𝑦  ∈  𝐴  ∧  ( 𝑛  −  𝑦 )  ∈  𝐵 ) ) ) | 
						
							| 59 | 58 | cbvrabv | ⊢ { 𝑘  ∈  ℕ0  ∣  ( 𝑦  ∈  𝐴  ∧  ( 𝑘  −  𝑦 )  ∈  𝐵 ) }  =  { 𝑛  ∈  ℕ0  ∣  ( 𝑦  ∈  𝐴  ∧  ( 𝑛  −  𝑦 )  ∈  𝐵 ) } | 
						
							| 60 | 55 59 | eqtr4di | ⊢ ( 𝑚  =  𝑦  →  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) }  =  { 𝑘  ∈  ℕ0  ∣  ( 𝑦  ∈  𝐴  ∧  ( 𝑘  −  𝑦 )  ∈  𝐵 ) } ) | 
						
							| 61 | 60 | oveq2d | ⊢ ( 𝑚  =  𝑦  →  ( 𝑥  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } )  =  ( 𝑥  sadd  { 𝑘  ∈  ℕ0  ∣  ( 𝑦  ∈  𝐴  ∧  ( 𝑘  −  𝑦 )  ∈  𝐵 ) } ) ) | 
						
							| 62 | 50 61 | cbvmpov | ⊢ ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) )  =  ( 𝑥  ∈  𝒫  ℕ0 ,  𝑦  ∈  ℕ0  ↦  ( 𝑥  sadd  { 𝑘  ∈  ℕ0  ∣  ( 𝑦  ∈  𝐴  ∧  ( 𝑘  −  𝑦 )  ∈  𝐵 ) } ) ) | 
						
							| 63 |  | ovex | ⊢ ( ( 𝑃 ‘ 𝑁 )  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑁  ∈  𝐴  ∧  ( 𝑛  −  𝑁 )  ∈  𝐵 ) } )  ∈  V | 
						
							| 64 | 49 62 63 | ovmpoa | ⊢ ( ( ( 𝑃 ‘ 𝑁 )  ∈  𝒫  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝑃 ‘ 𝑁 ) ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) 𝑁 )  =  ( ( 𝑃 ‘ 𝑁 )  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑁  ∈  𝐴  ∧  ( 𝑛  −  𝑁 )  ∈  𝐵 ) } ) ) | 
						
							| 65 | 36 4 64 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑃 ‘ 𝑁 ) ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) 𝑁 )  =  ( ( 𝑃 ‘ 𝑁 )  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑁  ∈  𝐴  ∧  ( 𝑛  −  𝑁 )  ∈  𝐵 ) } ) ) | 
						
							| 66 | 12 34 65 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝑃 ‘ ( 𝑁  +  1 ) )  =  ( ( 𝑃 ‘ 𝑁 )  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑁  ∈  𝐴  ∧  ( 𝑛  −  𝑁 )  ∈  𝐵 ) } ) ) |