| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smuval.a | ⊢ ( 𝜑  →  𝐴  ⊆  ℕ0 ) | 
						
							| 2 |  | smuval.b | ⊢ ( 𝜑  →  𝐵  ⊆  ℕ0 ) | 
						
							| 3 |  | smuval.p | ⊢ 𝑃  =  seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) | 
						
							| 4 |  | smuval.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 5 | 1 2 3 | smufval | ⊢ ( 𝜑  →  ( 𝐴  smul  𝐵 )  =  { 𝑘  ∈  ℕ0  ∣  𝑘  ∈  ( 𝑃 ‘ ( 𝑘  +  1 ) ) } ) | 
						
							| 6 | 5 | eleq2d | ⊢ ( 𝜑  →  ( 𝑁  ∈  ( 𝐴  smul  𝐵 )  ↔  𝑁  ∈  { 𝑘  ∈  ℕ0  ∣  𝑘  ∈  ( 𝑃 ‘ ( 𝑘  +  1 ) ) } ) ) | 
						
							| 7 |  | id | ⊢ ( 𝑘  =  𝑁  →  𝑘  =  𝑁 ) | 
						
							| 8 |  | fvoveq1 | ⊢ ( 𝑘  =  𝑁  →  ( 𝑃 ‘ ( 𝑘  +  1 ) )  =  ( 𝑃 ‘ ( 𝑁  +  1 ) ) ) | 
						
							| 9 | 7 8 | eleq12d | ⊢ ( 𝑘  =  𝑁  →  ( 𝑘  ∈  ( 𝑃 ‘ ( 𝑘  +  1 ) )  ↔  𝑁  ∈  ( 𝑃 ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 10 | 9 | elrab3 | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  ∈  { 𝑘  ∈  ℕ0  ∣  𝑘  ∈  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ↔  𝑁  ∈  ( 𝑃 ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 11 | 4 10 | syl | ⊢ ( 𝜑  →  ( 𝑁  ∈  { 𝑘  ∈  ℕ0  ∣  𝑘  ∈  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ↔  𝑁  ∈  ( 𝑃 ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 12 | 6 11 | bitrd | ⊢ ( 𝜑  →  ( 𝑁  ∈  ( 𝐴  smul  𝐵 )  ↔  𝑁  ∈  ( 𝑃 ‘ ( 𝑁  +  1 ) ) ) ) |