Step |
Hyp |
Ref |
Expression |
1 |
|
smuval.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℕ0 ) |
2 |
|
smuval.b |
⊢ ( 𝜑 → 𝐵 ⊆ ℕ0 ) |
3 |
|
smuval.p |
⊢ 𝑃 = seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝐴 ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) |
4 |
|
smuval.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
5 |
1 2 3
|
smufval |
⊢ ( 𝜑 → ( 𝐴 smul 𝐵 ) = { 𝑘 ∈ ℕ0 ∣ 𝑘 ∈ ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) |
6 |
5
|
eleq2d |
⊢ ( 𝜑 → ( 𝑁 ∈ ( 𝐴 smul 𝐵 ) ↔ 𝑁 ∈ { 𝑘 ∈ ℕ0 ∣ 𝑘 ∈ ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) ) |
7 |
|
id |
⊢ ( 𝑘 = 𝑁 → 𝑘 = 𝑁 ) |
8 |
|
fvoveq1 |
⊢ ( 𝑘 = 𝑁 → ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) |
9 |
7 8
|
eleq12d |
⊢ ( 𝑘 = 𝑁 → ( 𝑘 ∈ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ↔ 𝑁 ∈ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) |
10 |
9
|
elrab3 |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 ∈ { 𝑘 ∈ ℕ0 ∣ 𝑘 ∈ ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ↔ 𝑁 ∈ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) |
11 |
4 10
|
syl |
⊢ ( 𝜑 → ( 𝑁 ∈ { 𝑘 ∈ ℕ0 ∣ 𝑘 ∈ ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ↔ 𝑁 ∈ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) |
12 |
6 11
|
bitrd |
⊢ ( 𝜑 → ( 𝑁 ∈ ( 𝐴 smul 𝐵 ) ↔ 𝑁 ∈ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) |