| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smuval.a |  |-  ( ph -> A C_ NN0 ) | 
						
							| 2 |  | smuval.b |  |-  ( ph -> B C_ NN0 ) | 
						
							| 3 |  | smuval.p |  |-  P = seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. A /\ ( n - m ) e. B ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) | 
						
							| 4 |  | smuval.n |  |-  ( ph -> N e. NN0 ) | 
						
							| 5 | 1 2 3 | smufval |  |-  ( ph -> ( A smul B ) = { k e. NN0 | k e. ( P ` ( k + 1 ) ) } ) | 
						
							| 6 | 5 | eleq2d |  |-  ( ph -> ( N e. ( A smul B ) <-> N e. { k e. NN0 | k e. ( P ` ( k + 1 ) ) } ) ) | 
						
							| 7 |  | id |  |-  ( k = N -> k = N ) | 
						
							| 8 |  | fvoveq1 |  |-  ( k = N -> ( P ` ( k + 1 ) ) = ( P ` ( N + 1 ) ) ) | 
						
							| 9 | 7 8 | eleq12d |  |-  ( k = N -> ( k e. ( P ` ( k + 1 ) ) <-> N e. ( P ` ( N + 1 ) ) ) ) | 
						
							| 10 | 9 | elrab3 |  |-  ( N e. NN0 -> ( N e. { k e. NN0 | k e. ( P ` ( k + 1 ) ) } <-> N e. ( P ` ( N + 1 ) ) ) ) | 
						
							| 11 | 4 10 | syl |  |-  ( ph -> ( N e. { k e. NN0 | k e. ( P ` ( k + 1 ) ) } <-> N e. ( P ` ( N + 1 ) ) ) ) | 
						
							| 12 | 6 11 | bitrd |  |-  ( ph -> ( N e. ( A smul B ) <-> N e. ( P ` ( N + 1 ) ) ) ) |