Metamath Proof Explorer


Theorem smuval

Description: Define the addition of two bit sequences, using df-had and df-cad bit operations. (Contributed by Mario Carneiro, 9-Sep-2016)

Ref Expression
Hypotheses smuval.a φA0
smuval.b φB0
smuval.p P=seq0p𝒫0,m0psaddn0|mAnmBn0ifn=0n1
smuval.n φN0
Assertion smuval φNAsmulBNPN+1

Proof

Step Hyp Ref Expression
1 smuval.a φA0
2 smuval.b φB0
3 smuval.p P=seq0p𝒫0,m0psaddn0|mAnmBn0ifn=0n1
4 smuval.n φN0
5 1 2 3 smufval φAsmulB=k0|kPk+1
6 5 eleq2d φNAsmulBNk0|kPk+1
7 id k=Nk=N
8 fvoveq1 k=NPk+1=PN+1
9 7 8 eleq12d k=NkPk+1NPN+1
10 9 elrab3 N0Nk0|kPk+1NPN+1
11 4 10 syl φNk0|kPk+1NPN+1
12 6 11 bitrd φNAsmulBNPN+1