Metamath Proof Explorer


Definition df-smu

Description: Define the multiplication of two bit sequences, using repeated sequence addition. (Contributed by Mario Carneiro, 9-Sep-2016)

Ref Expression
Assertion df-smu smul=x𝒫0,y𝒫0k0|kseq0p𝒫0,m0psaddn0|mxnmyn0ifn=0n1k+1

Detailed syntax breakdown

Step Hyp Ref Expression
0 csmu classsmul
1 vx setvarx
2 cn0 class0
3 2 cpw class𝒫0
4 vy setvary
5 vk setvark
6 5 cv setvark
7 cc0 class0
8 vp setvarp
9 vm setvarm
10 8 cv setvarp
11 csad classsadd
12 vn setvarn
13 9 cv setvarm
14 1 cv setvarx
15 13 14 wcel wffmx
16 12 cv setvarn
17 cmin class
18 16 13 17 co classnm
19 4 cv setvary
20 18 19 wcel wffnmy
21 15 20 wa wffmxnmy
22 21 12 2 crab classn0|mxnmy
23 10 22 11 co classpsaddn0|mxnmy
24 8 9 3 2 23 cmpo classp𝒫0,m0psaddn0|mxnmy
25 16 7 wceq wffn=0
26 c0 class
27 c1 class1
28 16 27 17 co classn1
29 25 26 28 cif classifn=0n1
30 12 2 29 cmpt classn0ifn=0n1
31 24 30 7 cseq classseq0p𝒫0,m0psaddn0|mxnmyn0ifn=0n1
32 caddc class+
33 6 27 32 co classk+1
34 33 31 cfv classseq0p𝒫0,m0psaddn0|mxnmyn0ifn=0n1k+1
35 6 34 wcel wffkseq0p𝒫0,m0psaddn0|mxnmyn0ifn=0n1k+1
36 35 5 2 crab classk0|kseq0p𝒫0,m0psaddn0|mxnmyn0ifn=0n1k+1
37 1 4 3 3 36 cmpo classx𝒫0,y𝒫0k0|kseq0p𝒫0,m0psaddn0|mxnmyn0ifn=0n1k+1
38 0 37 wceq wffsmul=x𝒫0,y𝒫0k0|kseq0p𝒫0,m0psaddn0|mxnmyn0ifn=0n1k+1