| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smuval.a | ⊢ ( 𝜑  →  𝐴  ⊆  ℕ0 ) | 
						
							| 2 |  | smuval.b | ⊢ ( 𝜑  →  𝐵  ⊆  ℕ0 ) | 
						
							| 3 |  | smuval.p | ⊢ 𝑃  =  seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) | 
						
							| 4 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 5 | 3 | fveq1i | ⊢ ( 𝑃 ‘ 0 )  =  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 0 ) | 
						
							| 6 |  | seq1 | ⊢ ( 0  ∈  ℤ  →  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 0 )  =  ( ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ‘ 0 ) ) | 
						
							| 7 | 5 6 | eqtrid | ⊢ ( 0  ∈  ℤ  →  ( 𝑃 ‘ 0 )  =  ( ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ‘ 0 ) ) | 
						
							| 8 | 4 7 | mp1i | ⊢ ( 𝜑  →  ( 𝑃 ‘ 0 )  =  ( ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ‘ 0 ) ) | 
						
							| 9 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 10 |  | iftrue | ⊢ ( 𝑛  =  0  →  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) )  =  ∅ ) | 
						
							| 11 |  | eqid | ⊢ ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) | 
						
							| 12 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 13 | 10 11 12 | fvmpt | ⊢ ( 0  ∈  ℕ0  →  ( ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ‘ 0 )  =  ∅ ) | 
						
							| 14 | 9 13 | mp1i | ⊢ ( 𝜑  →  ( ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ‘ 0 )  =  ∅ ) | 
						
							| 15 | 8 14 | eqtrd | ⊢ ( 𝜑  →  ( 𝑃 ‘ 0 )  =  ∅ ) |