Step |
Hyp |
Ref |
Expression |
1 |
|
smueq.a |
|
2 |
|
smueq.b |
|
3 |
|
smueq.n |
|
4 |
|
smueq.p |
|
5 |
|
smueq.q |
|
6 |
1
|
adantr |
|
7 |
2
|
adantr |
|
8 |
|
elfzouz |
|
9 |
8
|
adantl |
|
10 |
|
nn0uz |
|
11 |
9 10
|
eleqtrrdi |
|
12 |
11
|
nn0zd |
|
13 |
12
|
peano2zd |
|
14 |
3
|
adantr |
|
15 |
14
|
nn0zd |
|
16 |
|
elfzolt2 |
|
17 |
16
|
adantl |
|
18 |
|
nn0ltp1le |
|
19 |
11 14 18
|
syl2anc |
|
20 |
17 19
|
mpbid |
|
21 |
|
eluz2 |
|
22 |
13 15 20 21
|
syl3anbrc |
|
23 |
6 7 4 11 22
|
smuval2 |
|
24 |
3 10
|
eleqtrdi |
|
25 |
|
eluzfz2b |
|
26 |
24 25
|
sylib |
|
27 |
|
fveq2 |
|
28 |
27
|
ineq1d |
|
29 |
|
fveq2 |
|
30 |
29
|
ineq1d |
|
31 |
28 30
|
eqeq12d |
|
32 |
31
|
imbi2d |
|
33 |
|
fveq2 |
|
34 |
33
|
ineq1d |
|
35 |
|
fveq2 |
|
36 |
35
|
ineq1d |
|
37 |
34 36
|
eqeq12d |
|
38 |
37
|
imbi2d |
|
39 |
|
fveq2 |
|
40 |
39
|
ineq1d |
|
41 |
|
fveq2 |
|
42 |
41
|
ineq1d |
|
43 |
40 42
|
eqeq12d |
|
44 |
43
|
imbi2d |
|
45 |
|
fveq2 |
|
46 |
45
|
ineq1d |
|
47 |
|
fveq2 |
|
48 |
47
|
ineq1d |
|
49 |
46 48
|
eqeq12d |
|
50 |
49
|
imbi2d |
|
51 |
1 2 4
|
smup0 |
|
52 |
|
inss1 |
|
53 |
52 2
|
sstrid |
|
54 |
1 53 5
|
smup0 |
|
55 |
51 54
|
eqtr4d |
|
56 |
55
|
ineq1d |
|
57 |
56
|
a1i |
|
58 |
|
oveq1 |
|
59 |
58
|
ineq1d |
|
60 |
1
|
adantr |
|
61 |
2
|
adantr |
|
62 |
|
elfzonn0 |
|
63 |
62
|
adantl |
|
64 |
60 61 4 63
|
smupp1 |
|
65 |
64
|
ineq1d |
|
66 |
1 2 4
|
smupf |
|
67 |
|
ffvelrn |
|
68 |
66 62 67
|
syl2an |
|
69 |
68
|
elpwid |
|
70 |
|
ssrab2 |
|
71 |
70
|
a1i |
|
72 |
3
|
adantr |
|
73 |
69 71 72
|
sadeq |
|
74 |
65 73
|
eqtrd |
|
75 |
53
|
adantr |
|
76 |
60 75 5 63
|
smupp1 |
|
77 |
76
|
ineq1d |
|
78 |
1 53 5
|
smupf |
|
79 |
|
ffvelrn |
|
80 |
78 62 79
|
syl2an |
|
81 |
80
|
elpwid |
|
82 |
|
ssrab2 |
|
83 |
82
|
a1i |
|
84 |
81 83 72
|
sadeq |
|
85 |
|
elinel2 |
|
86 |
61
|
adantr |
|
87 |
86
|
sseld |
|
88 |
|
elfzo0 |
|
89 |
88
|
simp2bi |
|
90 |
89
|
adantl |
|
91 |
|
elfzonn0 |
|
92 |
91
|
adantl |
|
93 |
92
|
nn0red |
|
94 |
63
|
adantr |
|
95 |
94
|
nn0red |
|
96 |
93 95
|
resubcld |
|
97 |
90
|
nnred |
|
98 |
94
|
nn0ge0d |
|
99 |
93 95
|
subge02d |
|
100 |
98 99
|
mpbid |
|
101 |
|
elfzolt2 |
|
102 |
101
|
adantl |
|
103 |
96 93 97 100 102
|
lelttrd |
|
104 |
90 103
|
jca |
|
105 |
|
elfzo0 |
|
106 |
|
3anass |
|
107 |
105 106
|
bitri |
|
108 |
107
|
baib |
|
109 |
104 108
|
syl5ibrcom |
|
110 |
87 109
|
syld |
|
111 |
110
|
pm4.71rd |
|
112 |
|
ancom |
|
113 |
|
elin |
|
114 |
112 113
|
bitr4i |
|
115 |
111 114
|
bitr2di |
|
116 |
115
|
anbi2d |
|
117 |
85 116
|
sylan2 |
|
118 |
117
|
rabbidva |
|
119 |
|
inrab2 |
|
120 |
|
inrab2 |
|
121 |
118 119 120
|
3eqtr4g |
|
122 |
121
|
oveq2d |
|
123 |
122
|
ineq1d |
|
124 |
77 84 123
|
3eqtrd |
|
125 |
74 124
|
eqeq12d |
|
126 |
59 125
|
syl5ibr |
|
127 |
126
|
expcom |
|
128 |
127
|
a2d |
|
129 |
32 38 44 50 57 128
|
fzind2 |
|
130 |
26 129
|
mpcom |
|
131 |
130
|
adantr |
|
132 |
131
|
eleq2d |
|
133 |
|
elin |
|
134 |
133
|
rbaib |
|
135 |
134
|
adantl |
|
136 |
|
elin |
|
137 |
136
|
rbaib |
|
138 |
137
|
adantl |
|
139 |
132 135 138
|
3bitr3d |
|
140 |
53
|
adantr |
|
141 |
6 140 5 14
|
smupval |
|
142 |
141
|
eleq2d |
|
143 |
23 139 142
|
3bitrd |
|
144 |
143
|
ex |
|
145 |
144
|
pm5.32rd |
|
146 |
|
elin |
|
147 |
|
elin |
|
148 |
145 146 147
|
3bitr4g |
|
149 |
148
|
eqrdv |
|