Description: Rewrite the elements of the partial sum sequence in terms of sequence multiplication. (Contributed by Mario Carneiro, 20-Sep-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | smupval.a | |
|
smupval.b | |
||
smupval.p | |
||
smupval.n | |
||
Assertion | smupval | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smupval.a | |
|
2 | smupval.b | |
|
3 | smupval.p | |
|
4 | smupval.n | |
|
5 | nn0uz | |
|
6 | 4 5 | eleqtrdi | |
7 | eluzfz2b | |
|
8 | 6 7 | sylib | |
9 | fveq2 | |
|
10 | fveq2 | |
|
11 | 9 10 | eqeq12d | |
12 | 11 | imbi2d | |
13 | fveq2 | |
|
14 | fveq2 | |
|
15 | 13 14 | eqeq12d | |
16 | 15 | imbi2d | |
17 | fveq2 | |
|
18 | fveq2 | |
|
19 | 17 18 | eqeq12d | |
20 | 19 | imbi2d | |
21 | fveq2 | |
|
22 | fveq2 | |
|
23 | 21 22 | eqeq12d | |
24 | 23 | imbi2d | |
25 | 1 2 3 | smup0 | |
26 | inss1 | |
|
27 | 26 1 | sstrid | |
28 | eqid | |
|
29 | 27 2 28 | smup0 | |
30 | 25 29 | eqtr4d | |
31 | 30 | a1i | |
32 | oveq1 | |
|
33 | 1 | adantr | |
34 | 2 | adantr | |
35 | elfzouz | |
|
36 | 35 | adantl | |
37 | 36 5 | eleqtrrdi | |
38 | 33 34 3 37 | smupp1 | |
39 | 27 | adantr | |
40 | 39 34 28 37 | smupp1 | |
41 | elin | |
|
42 | 41 | rbaib | |
43 | 42 | adantl | |
44 | 43 | anbi1d | |
45 | 44 | rabbidv | |
46 | 45 | oveq2d | |
47 | 40 46 | eqtrd | |
48 | 38 47 | eqeq12d | |
49 | 32 48 | imbitrrid | |
50 | 49 | expcom | |
51 | 50 | a2d | |
52 | 12 16 20 24 31 51 | fzind2 | |
53 | 8 52 | mpcom | |
54 | inss2 | |
|
55 | 54 | a1i | |
56 | 4 | nn0zd | |
57 | uzid | |
|
58 | 56 57 | syl | |
59 | 27 2 28 4 55 58 | smupvallem | |
60 | 53 59 | eqtrd | |