Metamath Proof Explorer


Theorem smupval

Description: Rewrite the elements of the partial sum sequence in terms of sequence multiplication. (Contributed by Mario Carneiro, 20-Sep-2016)

Ref Expression
Hypotheses smupval.a φ A 0
smupval.b φ B 0
smupval.p P = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1
smupval.n φ N 0
Assertion smupval φ P N = A 0 ..^ N smul B

Proof

Step Hyp Ref Expression
1 smupval.a φ A 0
2 smupval.b φ B 0
3 smupval.p P = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1
4 smupval.n φ N 0
5 nn0uz 0 = 0
6 4 5 eleqtrdi φ N 0
7 eluzfz2b N 0 N 0 N
8 6 7 sylib φ N 0 N
9 fveq2 x = 0 P x = P 0
10 fveq2 x = 0 seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A 0 ..^ N n m B n 0 if n = 0 n 1 x = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A 0 ..^ N n m B n 0 if n = 0 n 1 0
11 9 10 eqeq12d x = 0 P x = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A 0 ..^ N n m B n 0 if n = 0 n 1 x P 0 = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A 0 ..^ N n m B n 0 if n = 0 n 1 0
12 11 imbi2d x = 0 φ P x = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A 0 ..^ N n m B n 0 if n = 0 n 1 x φ P 0 = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A 0 ..^ N n m B n 0 if n = 0 n 1 0
13 fveq2 x = k P x = P k
14 fveq2 x = k seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A 0 ..^ N n m B n 0 if n = 0 n 1 x = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A 0 ..^ N n m B n 0 if n = 0 n 1 k
15 13 14 eqeq12d x = k P x = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A 0 ..^ N n m B n 0 if n = 0 n 1 x P k = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A 0 ..^ N n m B n 0 if n = 0 n 1 k
16 15 imbi2d x = k φ P x = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A 0 ..^ N n m B n 0 if n = 0 n 1 x φ P k = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A 0 ..^ N n m B n 0 if n = 0 n 1 k
17 fveq2 x = k + 1 P x = P k + 1
18 fveq2 x = k + 1 seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A 0 ..^ N n m B n 0 if n = 0 n 1 x = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A 0 ..^ N n m B n 0 if n = 0 n 1 k + 1
19 17 18 eqeq12d x = k + 1 P x = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A 0 ..^ N n m B n 0 if n = 0 n 1 x P k + 1 = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A 0 ..^ N n m B n 0 if n = 0 n 1 k + 1
20 19 imbi2d x = k + 1 φ P x = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A 0 ..^ N n m B n 0 if n = 0 n 1 x φ P k + 1 = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A 0 ..^ N n m B n 0 if n = 0 n 1 k + 1
21 fveq2 x = N P x = P N
22 fveq2 x = N seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A 0 ..^ N n m B n 0 if n = 0 n 1 x = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A 0 ..^ N n m B n 0 if n = 0 n 1 N
23 21 22 eqeq12d x = N P x = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A 0 ..^ N n m B n 0 if n = 0 n 1 x P N = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A 0 ..^ N n m B n 0 if n = 0 n 1 N
24 23 imbi2d x = N φ P x = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A 0 ..^ N n m B n 0 if n = 0 n 1 x φ P N = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A 0 ..^ N n m B n 0 if n = 0 n 1 N
25 1 2 3 smup0 φ P 0 =
26 inss1 A 0 ..^ N A
27 26 1 sstrid φ A 0 ..^ N 0
28 eqid seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A 0 ..^ N n m B n 0 if n = 0 n 1 = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A 0 ..^ N n m B n 0 if n = 0 n 1
29 27 2 28 smup0 φ seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A 0 ..^ N n m B n 0 if n = 0 n 1 0 =
30 25 29 eqtr4d φ P 0 = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A 0 ..^ N n m B n 0 if n = 0 n 1 0
31 30 a1i N 0 φ P 0 = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A 0 ..^ N n m B n 0 if n = 0 n 1 0
32 oveq1 P k = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A 0 ..^ N n m B n 0 if n = 0 n 1 k P k sadd n 0 | k A n k B = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A 0 ..^ N n m B n 0 if n = 0 n 1 k sadd n 0 | k A n k B
33 1 adantr φ k 0 ..^ N A 0
34 2 adantr φ k 0 ..^ N B 0
35 elfzouz k 0 ..^ N k 0
36 35 adantl φ k 0 ..^ N k 0
37 36 5 eleqtrrdi φ k 0 ..^ N k 0
38 33 34 3 37 smupp1 φ k 0 ..^ N P k + 1 = P k sadd n 0 | k A n k B
39 27 adantr φ k 0 ..^ N A 0 ..^ N 0
40 39 34 28 37 smupp1 φ k 0 ..^ N seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A 0 ..^ N n m B n 0 if n = 0 n 1 k + 1 = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A 0 ..^ N n m B n 0 if n = 0 n 1 k sadd n 0 | k A 0 ..^ N n k B
41 elin k A 0 ..^ N k A k 0 ..^ N
42 41 rbaib k 0 ..^ N k A 0 ..^ N k A
43 42 adantl φ k 0 ..^ N k A 0 ..^ N k A
44 43 anbi1d φ k 0 ..^ N k A 0 ..^ N n k B k A n k B
45 44 rabbidv φ k 0 ..^ N n 0 | k A 0 ..^ N n k B = n 0 | k A n k B
46 45 oveq2d φ k 0 ..^ N seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A 0 ..^ N n m B n 0 if n = 0 n 1 k sadd n 0 | k A 0 ..^ N n k B = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A 0 ..^ N n m B n 0 if n = 0 n 1 k sadd n 0 | k A n k B
47 40 46 eqtrd φ k 0 ..^ N seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A 0 ..^ N n m B n 0 if n = 0 n 1 k + 1 = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A 0 ..^ N n m B n 0 if n = 0 n 1 k sadd n 0 | k A n k B
48 38 47 eqeq12d φ k 0 ..^ N P k + 1 = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A 0 ..^ N n m B n 0 if n = 0 n 1 k + 1 P k sadd n 0 | k A n k B = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A 0 ..^ N n m B n 0 if n = 0 n 1 k sadd n 0 | k A n k B
49 32 48 syl5ibr φ k 0 ..^ N P k = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A 0 ..^ N n m B n 0 if n = 0 n 1 k P k + 1 = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A 0 ..^ N n m B n 0 if n = 0 n 1 k + 1
50 49 expcom k 0 ..^ N φ P k = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A 0 ..^ N n m B n 0 if n = 0 n 1 k P k + 1 = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A 0 ..^ N n m B n 0 if n = 0 n 1 k + 1
51 50 a2d k 0 ..^ N φ P k = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A 0 ..^ N n m B n 0 if n = 0 n 1 k φ P k + 1 = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A 0 ..^ N n m B n 0 if n = 0 n 1 k + 1
52 12 16 20 24 31 51 fzind2 N 0 N φ P N = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A 0 ..^ N n m B n 0 if n = 0 n 1 N
53 8 52 mpcom φ P N = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A 0 ..^ N n m B n 0 if n = 0 n 1 N
54 inss2 A 0 ..^ N 0 ..^ N
55 54 a1i φ A 0 ..^ N 0 ..^ N
56 4 nn0zd φ N
57 uzid N N N
58 56 57 syl φ N N
59 27 2 28 4 55 58 smupvallem φ seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A 0 ..^ N n m B n 0 if n = 0 n 1 N = A 0 ..^ N smul B
60 53 59 eqtrd φ P N = A 0 ..^ N smul B