Step |
Hyp |
Ref |
Expression |
1 |
|
smupval.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℕ0 ) |
2 |
|
smupval.b |
⊢ ( 𝜑 → 𝐵 ⊆ ℕ0 ) |
3 |
|
smupval.p |
⊢ 𝑃 = seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝐴 ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) |
4 |
|
smupval.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
5 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
6 |
4 5
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
7 |
|
eluzfz2b |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 0 ) ↔ 𝑁 ∈ ( 0 ... 𝑁 ) ) |
8 |
6 7
|
sylib |
⊢ ( 𝜑 → 𝑁 ∈ ( 0 ... 𝑁 ) ) |
9 |
|
fveq2 |
⊢ ( 𝑥 = 0 → ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 0 ) ) |
10 |
|
fveq2 |
⊢ ( 𝑥 = 0 → ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 𝑥 ) = ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 0 ) ) |
11 |
9 10
|
eqeq12d |
⊢ ( 𝑥 = 0 → ( ( 𝑃 ‘ 𝑥 ) = ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 𝑥 ) ↔ ( 𝑃 ‘ 0 ) = ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 0 ) ) ) |
12 |
11
|
imbi2d |
⊢ ( 𝑥 = 0 → ( ( 𝜑 → ( 𝑃 ‘ 𝑥 ) = ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 𝑥 ) ) ↔ ( 𝜑 → ( 𝑃 ‘ 0 ) = ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 0 ) ) ) ) |
13 |
|
fveq2 |
⊢ ( 𝑥 = 𝑘 → ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑘 ) ) |
14 |
|
fveq2 |
⊢ ( 𝑥 = 𝑘 → ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 𝑥 ) = ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 𝑘 ) ) |
15 |
13 14
|
eqeq12d |
⊢ ( 𝑥 = 𝑘 → ( ( 𝑃 ‘ 𝑥 ) = ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 𝑥 ) ↔ ( 𝑃 ‘ 𝑘 ) = ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 𝑘 ) ) ) |
16 |
15
|
imbi2d |
⊢ ( 𝑥 = 𝑘 → ( ( 𝜑 → ( 𝑃 ‘ 𝑥 ) = ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 𝑥 ) ) ↔ ( 𝜑 → ( 𝑃 ‘ 𝑘 ) = ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 𝑘 ) ) ) ) |
17 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) |
18 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 𝑥 ) = ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ ( 𝑘 + 1 ) ) ) |
19 |
17 18
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ( 𝑃 ‘ 𝑥 ) = ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 𝑥 ) ↔ ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ ( 𝑘 + 1 ) ) ) ) |
20 |
19
|
imbi2d |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ( 𝜑 → ( 𝑃 ‘ 𝑥 ) = ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 𝑥 ) ) ↔ ( 𝜑 → ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ ( 𝑘 + 1 ) ) ) ) ) |
21 |
|
fveq2 |
⊢ ( 𝑥 = 𝑁 → ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑁 ) ) |
22 |
|
fveq2 |
⊢ ( 𝑥 = 𝑁 → ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 𝑥 ) = ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 𝑁 ) ) |
23 |
21 22
|
eqeq12d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝑃 ‘ 𝑥 ) = ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 𝑥 ) ↔ ( 𝑃 ‘ 𝑁 ) = ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 𝑁 ) ) ) |
24 |
23
|
imbi2d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝜑 → ( 𝑃 ‘ 𝑥 ) = ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 𝑥 ) ) ↔ ( 𝜑 → ( 𝑃 ‘ 𝑁 ) = ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 𝑁 ) ) ) ) |
25 |
1 2 3
|
smup0 |
⊢ ( 𝜑 → ( 𝑃 ‘ 0 ) = ∅ ) |
26 |
|
inss1 |
⊢ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ⊆ 𝐴 |
27 |
26 1
|
sstrid |
⊢ ( 𝜑 → ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ⊆ ℕ0 ) |
28 |
|
eqid |
⊢ seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) = seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) |
29 |
27 2 28
|
smup0 |
⊢ ( 𝜑 → ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 0 ) = ∅ ) |
30 |
25 29
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑃 ‘ 0 ) = ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 0 ) ) |
31 |
30
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 0 ) → ( 𝜑 → ( 𝑃 ‘ 0 ) = ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 0 ) ) ) |
32 |
|
oveq1 |
⊢ ( ( 𝑃 ‘ 𝑘 ) = ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 𝑘 ) → ( ( 𝑃 ‘ 𝑘 ) sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑘 ∈ 𝐴 ∧ ( 𝑛 − 𝑘 ) ∈ 𝐵 ) } ) = ( ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 𝑘 ) sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑘 ∈ 𝐴 ∧ ( 𝑛 − 𝑘 ) ∈ 𝐵 ) } ) ) |
33 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → 𝐴 ⊆ ℕ0 ) |
34 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → 𝐵 ⊆ ℕ0 ) |
35 |
|
elfzouz |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑁 ) → 𝑘 ∈ ( ℤ≥ ‘ 0 ) ) |
36 |
35
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 0 ) ) |
37 |
36 5
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → 𝑘 ∈ ℕ0 ) |
38 |
33 34 3 37
|
smupp1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( ( 𝑃 ‘ 𝑘 ) sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑘 ∈ 𝐴 ∧ ( 𝑛 − 𝑘 ) ∈ 𝐵 ) } ) ) |
39 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ⊆ ℕ0 ) |
40 |
39 34 28 37
|
smupp1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ ( 𝑘 + 1 ) ) = ( ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 𝑘 ) sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑘 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑛 − 𝑘 ) ∈ 𝐵 ) } ) ) |
41 |
|
elin |
⊢ ( 𝑘 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ↔ ( 𝑘 ∈ 𝐴 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) ) |
42 |
41
|
rbaib |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑁 ) → ( 𝑘 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ↔ 𝑘 ∈ 𝐴 ) ) |
43 |
42
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑘 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ↔ 𝑘 ∈ 𝐴 ) ) |
44 |
43
|
anbi1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑘 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑛 − 𝑘 ) ∈ 𝐵 ) ↔ ( 𝑘 ∈ 𝐴 ∧ ( 𝑛 − 𝑘 ) ∈ 𝐵 ) ) ) |
45 |
44
|
rabbidv |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → { 𝑛 ∈ ℕ0 ∣ ( 𝑘 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑛 − 𝑘 ) ∈ 𝐵 ) } = { 𝑛 ∈ ℕ0 ∣ ( 𝑘 ∈ 𝐴 ∧ ( 𝑛 − 𝑘 ) ∈ 𝐵 ) } ) |
46 |
45
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 𝑘 ) sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑘 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑛 − 𝑘 ) ∈ 𝐵 ) } ) = ( ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 𝑘 ) sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑘 ∈ 𝐴 ∧ ( 𝑛 − 𝑘 ) ∈ 𝐵 ) } ) ) |
47 |
40 46
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ ( 𝑘 + 1 ) ) = ( ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 𝑘 ) sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑘 ∈ 𝐴 ∧ ( 𝑛 − 𝑘 ) ∈ 𝐵 ) } ) ) |
48 |
38 47
|
eqeq12d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ ( 𝑘 + 1 ) ) ↔ ( ( 𝑃 ‘ 𝑘 ) sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑘 ∈ 𝐴 ∧ ( 𝑛 − 𝑘 ) ∈ 𝐵 ) } ) = ( ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 𝑘 ) sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑘 ∈ 𝐴 ∧ ( 𝑛 − 𝑘 ) ∈ 𝐵 ) } ) ) ) |
49 |
32 48
|
syl5ibr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑃 ‘ 𝑘 ) = ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 𝑘 ) → ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ ( 𝑘 + 1 ) ) ) ) |
50 |
49
|
expcom |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑁 ) → ( 𝜑 → ( ( 𝑃 ‘ 𝑘 ) = ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 𝑘 ) → ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ ( 𝑘 + 1 ) ) ) ) ) |
51 |
50
|
a2d |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑁 ) → ( ( 𝜑 → ( 𝑃 ‘ 𝑘 ) = ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 𝑘 ) ) → ( 𝜑 → ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ ( 𝑘 + 1 ) ) ) ) ) |
52 |
12 16 20 24 31 51
|
fzind2 |
⊢ ( 𝑁 ∈ ( 0 ... 𝑁 ) → ( 𝜑 → ( 𝑃 ‘ 𝑁 ) = ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 𝑁 ) ) ) |
53 |
8 52
|
mpcom |
⊢ ( 𝜑 → ( 𝑃 ‘ 𝑁 ) = ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 𝑁 ) ) |
54 |
|
inss2 |
⊢ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ⊆ ( 0 ..^ 𝑁 ) |
55 |
54
|
a1i |
⊢ ( 𝜑 → ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ⊆ ( 0 ..^ 𝑁 ) ) |
56 |
4
|
nn0zd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
57 |
|
uzid |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
58 |
56 57
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
59 |
27 2 28 4 55 58
|
smupvallem |
⊢ ( 𝜑 → ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 𝑁 ) = ( ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) smul 𝐵 ) ) |
60 |
53 59
|
eqtrd |
⊢ ( 𝜑 → ( 𝑃 ‘ 𝑁 ) = ( ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) smul 𝐵 ) ) |