| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smupval.a | ⊢ ( 𝜑  →  𝐴  ⊆  ℕ0 ) | 
						
							| 2 |  | smupval.b | ⊢ ( 𝜑  →  𝐵  ⊆  ℕ0 ) | 
						
							| 3 |  | smupval.p | ⊢ 𝑃  =  seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) | 
						
							| 4 |  | smupval.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 5 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 6 | 4 5 | eleqtrdi | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 7 |  | eluzfz2b | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 0 )  ↔  𝑁  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 8 | 6 7 | sylib | ⊢ ( 𝜑  →  𝑁  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑥  =  0  →  ( 𝑃 ‘ 𝑥 )  =  ( 𝑃 ‘ 0 ) ) | 
						
							| 10 |  | fveq2 | ⊢ ( 𝑥  =  0  →  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 𝑥 )  =  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 0 ) ) | 
						
							| 11 | 9 10 | eqeq12d | ⊢ ( 𝑥  =  0  →  ( ( 𝑃 ‘ 𝑥 )  =  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 𝑥 )  ↔  ( 𝑃 ‘ 0 )  =  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 0 ) ) ) | 
						
							| 12 | 11 | imbi2d | ⊢ ( 𝑥  =  0  →  ( ( 𝜑  →  ( 𝑃 ‘ 𝑥 )  =  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 𝑥 ) )  ↔  ( 𝜑  →  ( 𝑃 ‘ 0 )  =  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 0 ) ) ) ) | 
						
							| 13 |  | fveq2 | ⊢ ( 𝑥  =  𝑘  →  ( 𝑃 ‘ 𝑥 )  =  ( 𝑃 ‘ 𝑘 ) ) | 
						
							| 14 |  | fveq2 | ⊢ ( 𝑥  =  𝑘  →  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 𝑥 )  =  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 𝑘 ) ) | 
						
							| 15 | 13 14 | eqeq12d | ⊢ ( 𝑥  =  𝑘  →  ( ( 𝑃 ‘ 𝑥 )  =  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 𝑥 )  ↔  ( 𝑃 ‘ 𝑘 )  =  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 𝑘 ) ) ) | 
						
							| 16 | 15 | imbi2d | ⊢ ( 𝑥  =  𝑘  →  ( ( 𝜑  →  ( 𝑃 ‘ 𝑥 )  =  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 𝑥 ) )  ↔  ( 𝜑  →  ( 𝑃 ‘ 𝑘 )  =  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 𝑘 ) ) ) ) | 
						
							| 17 |  | fveq2 | ⊢ ( 𝑥  =  ( 𝑘  +  1 )  →  ( 𝑃 ‘ 𝑥 )  =  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 18 |  | fveq2 | ⊢ ( 𝑥  =  ( 𝑘  +  1 )  →  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 𝑥 )  =  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 19 | 17 18 | eqeq12d | ⊢ ( 𝑥  =  ( 𝑘  +  1 )  →  ( ( 𝑃 ‘ 𝑥 )  =  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 𝑥 )  ↔  ( 𝑃 ‘ ( 𝑘  +  1 ) )  =  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 20 | 19 | imbi2d | ⊢ ( 𝑥  =  ( 𝑘  +  1 )  →  ( ( 𝜑  →  ( 𝑃 ‘ 𝑥 )  =  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 𝑥 ) )  ↔  ( 𝜑  →  ( 𝑃 ‘ ( 𝑘  +  1 ) )  =  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 21 |  | fveq2 | ⊢ ( 𝑥  =  𝑁  →  ( 𝑃 ‘ 𝑥 )  =  ( 𝑃 ‘ 𝑁 ) ) | 
						
							| 22 |  | fveq2 | ⊢ ( 𝑥  =  𝑁  →  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 𝑥 )  =  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 𝑁 ) ) | 
						
							| 23 | 21 22 | eqeq12d | ⊢ ( 𝑥  =  𝑁  →  ( ( 𝑃 ‘ 𝑥 )  =  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 𝑥 )  ↔  ( 𝑃 ‘ 𝑁 )  =  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 𝑁 ) ) ) | 
						
							| 24 | 23 | imbi2d | ⊢ ( 𝑥  =  𝑁  →  ( ( 𝜑  →  ( 𝑃 ‘ 𝑥 )  =  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 𝑥 ) )  ↔  ( 𝜑  →  ( 𝑃 ‘ 𝑁 )  =  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 𝑁 ) ) ) ) | 
						
							| 25 | 1 2 3 | smup0 | ⊢ ( 𝜑  →  ( 𝑃 ‘ 0 )  =  ∅ ) | 
						
							| 26 |  | inss1 | ⊢ ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ⊆  𝐴 | 
						
							| 27 | 26 1 | sstrid | ⊢ ( 𝜑  →  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ⊆  ℕ0 ) | 
						
							| 28 |  | eqid | ⊢ seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) )  =  seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) | 
						
							| 29 | 27 2 28 | smup0 | ⊢ ( 𝜑  →  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 0 )  =  ∅ ) | 
						
							| 30 | 25 29 | eqtr4d | ⊢ ( 𝜑  →  ( 𝑃 ‘ 0 )  =  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 0 ) ) | 
						
							| 31 | 30 | a1i | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 0 )  →  ( 𝜑  →  ( 𝑃 ‘ 0 )  =  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 0 ) ) ) | 
						
							| 32 |  | oveq1 | ⊢ ( ( 𝑃 ‘ 𝑘 )  =  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 𝑘 )  →  ( ( 𝑃 ‘ 𝑘 )  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑘  ∈  𝐴  ∧  ( 𝑛  −  𝑘 )  ∈  𝐵 ) } )  =  ( ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 𝑘 )  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑘  ∈  𝐴  ∧  ( 𝑛  −  𝑘 )  ∈  𝐵 ) } ) ) | 
						
							| 33 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ..^ 𝑁 ) )  →  𝐴  ⊆  ℕ0 ) | 
						
							| 34 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ..^ 𝑁 ) )  →  𝐵  ⊆  ℕ0 ) | 
						
							| 35 |  | elfzouz | ⊢ ( 𝑘  ∈  ( 0 ..^ 𝑁 )  →  𝑘  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 36 | 35 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ..^ 𝑁 ) )  →  𝑘  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 37 | 36 5 | eleqtrrdi | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ..^ 𝑁 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 38 | 33 34 3 37 | smupp1 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ..^ 𝑁 ) )  →  ( 𝑃 ‘ ( 𝑘  +  1 ) )  =  ( ( 𝑃 ‘ 𝑘 )  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑘  ∈  𝐴  ∧  ( 𝑛  −  𝑘 )  ∈  𝐵 ) } ) ) | 
						
							| 39 | 27 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ..^ 𝑁 ) )  →  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ⊆  ℕ0 ) | 
						
							| 40 | 39 34 28 37 | smupp1 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ..^ 𝑁 ) )  →  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ ( 𝑘  +  1 ) )  =  ( ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 𝑘 )  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑘  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ∧  ( 𝑛  −  𝑘 )  ∈  𝐵 ) } ) ) | 
						
							| 41 |  | elin | ⊢ ( 𝑘  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ↔  ( 𝑘  ∈  𝐴  ∧  𝑘  ∈  ( 0 ..^ 𝑁 ) ) ) | 
						
							| 42 | 41 | rbaib | ⊢ ( 𝑘  ∈  ( 0 ..^ 𝑁 )  →  ( 𝑘  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ↔  𝑘  ∈  𝐴 ) ) | 
						
							| 43 | 42 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ..^ 𝑁 ) )  →  ( 𝑘  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ↔  𝑘  ∈  𝐴 ) ) | 
						
							| 44 | 43 | anbi1d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ..^ 𝑁 ) )  →  ( ( 𝑘  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ∧  ( 𝑛  −  𝑘 )  ∈  𝐵 )  ↔  ( 𝑘  ∈  𝐴  ∧  ( 𝑛  −  𝑘 )  ∈  𝐵 ) ) ) | 
						
							| 45 | 44 | rabbidv | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ..^ 𝑁 ) )  →  { 𝑛  ∈  ℕ0  ∣  ( 𝑘  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ∧  ( 𝑛  −  𝑘 )  ∈  𝐵 ) }  =  { 𝑛  ∈  ℕ0  ∣  ( 𝑘  ∈  𝐴  ∧  ( 𝑛  −  𝑘 )  ∈  𝐵 ) } ) | 
						
							| 46 | 45 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ..^ 𝑁 ) )  →  ( ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 𝑘 )  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑘  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ∧  ( 𝑛  −  𝑘 )  ∈  𝐵 ) } )  =  ( ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 𝑘 )  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑘  ∈  𝐴  ∧  ( 𝑛  −  𝑘 )  ∈  𝐵 ) } ) ) | 
						
							| 47 | 40 46 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ..^ 𝑁 ) )  →  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ ( 𝑘  +  1 ) )  =  ( ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 𝑘 )  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑘  ∈  𝐴  ∧  ( 𝑛  −  𝑘 )  ∈  𝐵 ) } ) ) | 
						
							| 48 | 38 47 | eqeq12d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ..^ 𝑁 ) )  →  ( ( 𝑃 ‘ ( 𝑘  +  1 ) )  =  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ ( 𝑘  +  1 ) )  ↔  ( ( 𝑃 ‘ 𝑘 )  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑘  ∈  𝐴  ∧  ( 𝑛  −  𝑘 )  ∈  𝐵 ) } )  =  ( ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 𝑘 )  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑘  ∈  𝐴  ∧  ( 𝑛  −  𝑘 )  ∈  𝐵 ) } ) ) ) | 
						
							| 49 | 32 48 | imbitrrid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ..^ 𝑁 ) )  →  ( ( 𝑃 ‘ 𝑘 )  =  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 𝑘 )  →  ( 𝑃 ‘ ( 𝑘  +  1 ) )  =  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 50 | 49 | expcom | ⊢ ( 𝑘  ∈  ( 0 ..^ 𝑁 )  →  ( 𝜑  →  ( ( 𝑃 ‘ 𝑘 )  =  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 𝑘 )  →  ( 𝑃 ‘ ( 𝑘  +  1 ) )  =  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 51 | 50 | a2d | ⊢ ( 𝑘  ∈  ( 0 ..^ 𝑁 )  →  ( ( 𝜑  →  ( 𝑃 ‘ 𝑘 )  =  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 𝑘 ) )  →  ( 𝜑  →  ( 𝑃 ‘ ( 𝑘  +  1 ) )  =  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 52 | 12 16 20 24 31 51 | fzind2 | ⊢ ( 𝑁  ∈  ( 0 ... 𝑁 )  →  ( 𝜑  →  ( 𝑃 ‘ 𝑁 )  =  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 𝑁 ) ) ) | 
						
							| 53 | 8 52 | mpcom | ⊢ ( 𝜑  →  ( 𝑃 ‘ 𝑁 )  =  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 𝑁 ) ) | 
						
							| 54 |  | inss2 | ⊢ ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ⊆  ( 0 ..^ 𝑁 ) | 
						
							| 55 | 54 | a1i | ⊢ ( 𝜑  →  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ⊆  ( 0 ..^ 𝑁 ) ) | 
						
							| 56 | 4 | nn0zd | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 57 |  | uzid | ⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∈  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 58 | 56 57 | syl | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 59 | 27 2 28 4 55 58 | smupvallem | ⊢ ( 𝜑  →  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 𝑁 )  =  ( ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  smul  𝐵 ) ) | 
						
							| 60 | 53 59 | eqtrd | ⊢ ( 𝜑  →  ( 𝑃 ‘ 𝑁 )  =  ( ( 𝐴  ∩  ( 0 ..^ 𝑁 ) )  smul  𝐵 ) ) |