Step |
Hyp |
Ref |
Expression |
1 |
|
smup1.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℕ0 ) |
2 |
|
smup1.b |
⊢ ( 𝜑 → 𝐵 ⊆ ℕ0 ) |
3 |
|
smup1.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
4 |
|
eqid |
⊢ seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝐴 ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) = seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝐴 ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) |
5 |
1 2 4 3
|
smupp1 |
⊢ ( 𝜑 → ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝐴 ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝐴 ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 𝑁 ) sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑁 ∈ 𝐴 ∧ ( 𝑛 − 𝑁 ) ∈ 𝐵 ) } ) ) |
6 |
|
peano2nn0 |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ0 ) |
7 |
3 6
|
syl |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℕ0 ) |
8 |
1 2 4 7
|
smupval |
⊢ ( 𝜑 → ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝐴 ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ ( 𝑁 + 1 ) ) = ( ( 𝐴 ∩ ( 0 ..^ ( 𝑁 + 1 ) ) ) smul 𝐵 ) ) |
9 |
1 2 4 3
|
smupval |
⊢ ( 𝜑 → ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝐴 ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 𝑁 ) = ( ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) smul 𝐵 ) ) |
10 |
9
|
oveq1d |
⊢ ( 𝜑 → ( ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝐴 ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 𝑁 ) sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑁 ∈ 𝐴 ∧ ( 𝑛 − 𝑁 ) ∈ 𝐵 ) } ) = ( ( ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) smul 𝐵 ) sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑁 ∈ 𝐴 ∧ ( 𝑛 − 𝑁 ) ∈ 𝐵 ) } ) ) |
11 |
5 8 10
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝐴 ∩ ( 0 ..^ ( 𝑁 + 1 ) ) ) smul 𝐵 ) = ( ( ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) smul 𝐵 ) sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑁 ∈ 𝐴 ∧ ( 𝑛 − 𝑁 ) ∈ 𝐵 ) } ) ) |