Metamath Proof Explorer


Theorem smup1

Description: Rewrite smupp1 using only smul instead of the internal recursive function P . (Contributed by Mario Carneiro, 20-Sep-2016)

Ref Expression
Hypotheses smup1.a φ A 0
smup1.b φ B 0
smup1.n φ N 0
Assertion smup1 φ A 0 ..^ N + 1 smul B = A 0 ..^ N smul B sadd n 0 | N A n N B

Proof

Step Hyp Ref Expression
1 smup1.a φ A 0
2 smup1.b φ B 0
3 smup1.n φ N 0
4 eqid seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1 = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1
5 1 2 4 3 smupp1 φ seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1 N + 1 = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1 N sadd n 0 | N A n N B
6 peano2nn0 N 0 N + 1 0
7 3 6 syl φ N + 1 0
8 1 2 4 7 smupval φ seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1 N + 1 = A 0 ..^ N + 1 smul B
9 1 2 4 3 smupval φ seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1 N = A 0 ..^ N smul B
10 9 oveq1d φ seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1 N sadd n 0 | N A n N B = A 0 ..^ N smul B sadd n 0 | N A n N B
11 5 8 10 3eqtr3d φ A 0 ..^ N + 1 smul B = A 0 ..^ N smul B sadd n 0 | N A n N B