| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smuval.a | ⊢ ( 𝜑  →  𝐴  ⊆  ℕ0 ) | 
						
							| 2 |  | smuval.b | ⊢ ( 𝜑  →  𝐵  ⊆  ℕ0 ) | 
						
							| 3 |  | smuval.p | ⊢ 𝑃  =  seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) | 
						
							| 4 |  | smuval.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 5 |  | smupvallem.a | ⊢ ( 𝜑  →  𝐴  ⊆  ( 0 ..^ 𝑁 ) ) | 
						
							| 6 |  | smupvallem.m | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 7 | 1 2 3 | smupf | ⊢ ( 𝜑  →  𝑃 : ℕ0 ⟶ 𝒫  ℕ0 ) | 
						
							| 8 |  | eluznn0 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑀  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑀  ∈  ℕ0 ) | 
						
							| 9 | 4 6 8 | syl2anc | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 10 | 7 9 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝑃 ‘ 𝑀 )  ∈  𝒫  ℕ0 ) | 
						
							| 11 | 10 | elpwid | ⊢ ( 𝜑  →  ( 𝑃 ‘ 𝑀 )  ⊆  ℕ0 ) | 
						
							| 12 | 11 | sseld | ⊢ ( 𝜑  →  ( 𝑘  ∈  ( 𝑃 ‘ 𝑀 )  →  𝑘  ∈  ℕ0 ) ) | 
						
							| 13 | 1 2 3 | smufval | ⊢ ( 𝜑  →  ( 𝐴  smul  𝐵 )  =  { 𝑘  ∈  ℕ0  ∣  𝑘  ∈  ( 𝑃 ‘ ( 𝑘  +  1 ) ) } ) | 
						
							| 14 |  | ssrab2 | ⊢ { 𝑘  ∈  ℕ0  ∣  𝑘  ∈  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ℕ0 | 
						
							| 15 | 13 14 | eqsstrdi | ⊢ ( 𝜑  →  ( 𝐴  smul  𝐵 )  ⊆  ℕ0 ) | 
						
							| 16 | 15 | sseld | ⊢ ( 𝜑  →  ( 𝑘  ∈  ( 𝐴  smul  𝐵 )  →  𝑘  ∈  ℕ0 ) ) | 
						
							| 17 | 1 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑘  +  1 ) ) )  →  𝐴  ⊆  ℕ0 ) | 
						
							| 18 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑘  +  1 ) ) )  →  𝐵  ⊆  ℕ0 ) | 
						
							| 19 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑘  +  1 ) ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 20 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  𝑀  ∈  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 21 |  | uztrn | ⊢ ( ( 𝑀  ∈  ( ℤ≥ ‘ 𝑁 )  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑘  +  1 ) ) )  →  𝑀  ∈  ( ℤ≥ ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 22 | 20 21 | sylan | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑘  +  1 ) ) )  →  𝑀  ∈  ( ℤ≥ ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 23 | 17 18 3 19 22 | smuval2 | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑘  +  1 ) ) )  →  ( 𝑘  ∈  ( 𝐴  smul  𝐵 )  ↔  𝑘  ∈  ( 𝑃 ‘ 𝑀 ) ) ) | 
						
							| 24 | 23 | bicomd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑘  +  1 ) ) )  →  ( 𝑘  ∈  ( 𝑃 ‘ 𝑀 )  ↔  𝑘  ∈  ( 𝐴  smul  𝐵 ) ) ) | 
						
							| 25 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  ( 𝑘  +  1 )  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑀  ∈  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 26 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  ( 𝑘  +  1 )  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝜑 ) | 
						
							| 27 |  | fveqeq2 | ⊢ ( 𝑥  =  𝑁  →  ( ( 𝑃 ‘ 𝑥 )  =  ( 𝑃 ‘ 𝑁 )  ↔  ( 𝑃 ‘ 𝑁 )  =  ( 𝑃 ‘ 𝑁 ) ) ) | 
						
							| 28 | 27 | imbi2d | ⊢ ( 𝑥  =  𝑁  →  ( ( 𝜑  →  ( 𝑃 ‘ 𝑥 )  =  ( 𝑃 ‘ 𝑁 ) )  ↔  ( 𝜑  →  ( 𝑃 ‘ 𝑁 )  =  ( 𝑃 ‘ 𝑁 ) ) ) ) | 
						
							| 29 |  | fveqeq2 | ⊢ ( 𝑥  =  𝑘  →  ( ( 𝑃 ‘ 𝑥 )  =  ( 𝑃 ‘ 𝑁 )  ↔  ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ 𝑁 ) ) ) | 
						
							| 30 | 29 | imbi2d | ⊢ ( 𝑥  =  𝑘  →  ( ( 𝜑  →  ( 𝑃 ‘ 𝑥 )  =  ( 𝑃 ‘ 𝑁 ) )  ↔  ( 𝜑  →  ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ 𝑁 ) ) ) ) | 
						
							| 31 |  | fveqeq2 | ⊢ ( 𝑥  =  ( 𝑘  +  1 )  →  ( ( 𝑃 ‘ 𝑥 )  =  ( 𝑃 ‘ 𝑁 )  ↔  ( 𝑃 ‘ ( 𝑘  +  1 ) )  =  ( 𝑃 ‘ 𝑁 ) ) ) | 
						
							| 32 | 31 | imbi2d | ⊢ ( 𝑥  =  ( 𝑘  +  1 )  →  ( ( 𝜑  →  ( 𝑃 ‘ 𝑥 )  =  ( 𝑃 ‘ 𝑁 ) )  ↔  ( 𝜑  →  ( 𝑃 ‘ ( 𝑘  +  1 ) )  =  ( 𝑃 ‘ 𝑁 ) ) ) ) | 
						
							| 33 |  | fveqeq2 | ⊢ ( 𝑥  =  𝑀  →  ( ( 𝑃 ‘ 𝑥 )  =  ( 𝑃 ‘ 𝑁 )  ↔  ( 𝑃 ‘ 𝑀 )  =  ( 𝑃 ‘ 𝑁 ) ) ) | 
						
							| 34 | 33 | imbi2d | ⊢ ( 𝑥  =  𝑀  →  ( ( 𝜑  →  ( 𝑃 ‘ 𝑥 )  =  ( 𝑃 ‘ 𝑁 ) )  ↔  ( 𝜑  →  ( 𝑃 ‘ 𝑀 )  =  ( 𝑃 ‘ 𝑁 ) ) ) ) | 
						
							| 35 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑃 ‘ 𝑁 )  =  ( 𝑃 ‘ 𝑁 ) ) | 
						
							| 36 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝐴  ⊆  ℕ0 ) | 
						
							| 37 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝐵  ⊆  ℕ0 ) | 
						
							| 38 |  | eluznn0 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 39 | 4 38 | sylan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 40 | 36 37 3 39 | smupp1 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( 𝑃 ‘ ( 𝑘  +  1 ) )  =  ( ( 𝑃 ‘ 𝑘 )  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑘  ∈  𝐴  ∧  ( 𝑛  −  𝑘 )  ∈  𝐵 ) } ) ) | 
						
							| 41 | 4 | nn0red | ⊢ ( 𝜑  →  𝑁  ∈  ℝ ) | 
						
							| 42 | 41 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑁  ∈  ℝ ) | 
						
							| 43 | 39 | nn0red | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑘  ∈  ℝ ) | 
						
							| 44 |  | eluzle | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 𝑁 )  →  𝑁  ≤  𝑘 ) | 
						
							| 45 | 44 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑁  ≤  𝑘 ) | 
						
							| 46 | 42 43 45 | lensymd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ¬  𝑘  <  𝑁 ) | 
						
							| 47 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝐴  ⊆  ( 0 ..^ 𝑁 ) ) | 
						
							| 48 | 47 | sseld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( 𝑘  ∈  𝐴  →  𝑘  ∈  ( 0 ..^ 𝑁 ) ) ) | 
						
							| 49 |  | elfzolt2 | ⊢ ( 𝑘  ∈  ( 0 ..^ 𝑁 )  →  𝑘  <  𝑁 ) | 
						
							| 50 | 48 49 | syl6 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( 𝑘  ∈  𝐴  →  𝑘  <  𝑁 ) ) | 
						
							| 51 | 50 | adantrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( ( 𝑘  ∈  𝐴  ∧  ( 𝑛  −  𝑘 )  ∈  𝐵 )  →  𝑘  <  𝑁 ) ) | 
						
							| 52 | 46 51 | mtod | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ¬  ( 𝑘  ∈  𝐴  ∧  ( 𝑛  −  𝑘 )  ∈  𝐵 ) ) | 
						
							| 53 | 52 | ralrimivw | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ∀ 𝑛  ∈  ℕ0 ¬  ( 𝑘  ∈  𝐴  ∧  ( 𝑛  −  𝑘 )  ∈  𝐵 ) ) | 
						
							| 54 |  | rabeq0 | ⊢ ( { 𝑛  ∈  ℕ0  ∣  ( 𝑘  ∈  𝐴  ∧  ( 𝑛  −  𝑘 )  ∈  𝐵 ) }  =  ∅  ↔  ∀ 𝑛  ∈  ℕ0 ¬  ( 𝑘  ∈  𝐴  ∧  ( 𝑛  −  𝑘 )  ∈  𝐵 ) ) | 
						
							| 55 | 53 54 | sylibr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  { 𝑛  ∈  ℕ0  ∣  ( 𝑘  ∈  𝐴  ∧  ( 𝑛  −  𝑘 )  ∈  𝐵 ) }  =  ∅ ) | 
						
							| 56 | 55 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( ( 𝑃 ‘ 𝑘 )  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑘  ∈  𝐴  ∧  ( 𝑛  −  𝑘 )  ∈  𝐵 ) } )  =  ( ( 𝑃 ‘ 𝑘 )  sadd  ∅ ) ) | 
						
							| 57 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑃 : ℕ0 ⟶ 𝒫  ℕ0 ) | 
						
							| 58 | 57 39 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( 𝑃 ‘ 𝑘 )  ∈  𝒫  ℕ0 ) | 
						
							| 59 | 58 | elpwid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( 𝑃 ‘ 𝑘 )  ⊆  ℕ0 ) | 
						
							| 60 |  | sadid1 | ⊢ ( ( 𝑃 ‘ 𝑘 )  ⊆  ℕ0  →  ( ( 𝑃 ‘ 𝑘 )  sadd  ∅ )  =  ( 𝑃 ‘ 𝑘 ) ) | 
						
							| 61 | 59 60 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( ( 𝑃 ‘ 𝑘 )  sadd  ∅ )  =  ( 𝑃 ‘ 𝑘 ) ) | 
						
							| 62 | 40 56 61 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( 𝑃 ‘ ( 𝑘  +  1 ) )  =  ( 𝑃 ‘ 𝑘 ) ) | 
						
							| 63 | 62 | eqeq1d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( ( 𝑃 ‘ ( 𝑘  +  1 ) )  =  ( 𝑃 ‘ 𝑁 )  ↔  ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ 𝑁 ) ) ) | 
						
							| 64 | 63 | biimprd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ 𝑁 )  →  ( 𝑃 ‘ ( 𝑘  +  1 ) )  =  ( 𝑃 ‘ 𝑁 ) ) ) | 
						
							| 65 | 64 | expcom | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 𝑁 )  →  ( 𝜑  →  ( ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ 𝑁 )  →  ( 𝑃 ‘ ( 𝑘  +  1 ) )  =  ( 𝑃 ‘ 𝑁 ) ) ) ) | 
						
							| 66 | 65 | a2d | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 𝑁 )  →  ( ( 𝜑  →  ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ 𝑁 ) )  →  ( 𝜑  →  ( 𝑃 ‘ ( 𝑘  +  1 ) )  =  ( 𝑃 ‘ 𝑁 ) ) ) ) | 
						
							| 67 | 28 30 32 34 35 66 | uzind4i | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 𝑁 )  →  ( 𝜑  →  ( 𝑃 ‘ 𝑀 )  =  ( 𝑃 ‘ 𝑁 ) ) ) | 
						
							| 68 | 25 26 67 | sylc | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  ( 𝑘  +  1 )  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( 𝑃 ‘ 𝑀 )  =  ( 𝑃 ‘ 𝑁 ) ) | 
						
							| 69 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  ( 𝑘  +  1 )  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( 𝑘  +  1 )  ∈  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 70 | 28 30 32 32 35 66 | uzind4i | ⊢ ( ( 𝑘  +  1 )  ∈  ( ℤ≥ ‘ 𝑁 )  →  ( 𝜑  →  ( 𝑃 ‘ ( 𝑘  +  1 ) )  =  ( 𝑃 ‘ 𝑁 ) ) ) | 
						
							| 71 | 69 26 70 | sylc | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  ( 𝑘  +  1 )  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( 𝑃 ‘ ( 𝑘  +  1 ) )  =  ( 𝑃 ‘ 𝑁 ) ) | 
						
							| 72 | 68 71 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  ( 𝑘  +  1 )  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( 𝑃 ‘ 𝑀 )  =  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 73 | 72 | eleq2d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  ( 𝑘  +  1 )  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( 𝑘  ∈  ( 𝑃 ‘ 𝑀 )  ↔  𝑘  ∈  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 74 | 1 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  ( 𝑘  +  1 )  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝐴  ⊆  ℕ0 ) | 
						
							| 75 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  ( 𝑘  +  1 )  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝐵  ⊆  ℕ0 ) | 
						
							| 76 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  ( 𝑘  +  1 )  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 77 | 74 75 3 76 | smuval | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  ( 𝑘  +  1 )  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( 𝑘  ∈  ( 𝐴  smul  𝐵 )  ↔  𝑘  ∈  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 78 | 73 77 | bitr4d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  ( 𝑘  +  1 )  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( 𝑘  ∈  ( 𝑃 ‘ 𝑀 )  ↔  𝑘  ∈  ( 𝐴  smul  𝐵 ) ) ) | 
						
							| 79 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 80 | 79 | nn0zd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  𝑘  ∈  ℤ ) | 
						
							| 81 | 80 | peano2zd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑘  +  1 )  ∈  ℤ ) | 
						
							| 82 | 4 | nn0zd | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 83 | 82 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  𝑁  ∈  ℤ ) | 
						
							| 84 |  | uztric | ⊢ ( ( ( 𝑘  +  1 )  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑁  ∈  ( ℤ≥ ‘ ( 𝑘  +  1 ) )  ∨  ( 𝑘  +  1 )  ∈  ( ℤ≥ ‘ 𝑁 ) ) ) | 
						
							| 85 | 81 83 84 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑁  ∈  ( ℤ≥ ‘ ( 𝑘  +  1 ) )  ∨  ( 𝑘  +  1 )  ∈  ( ℤ≥ ‘ 𝑁 ) ) ) | 
						
							| 86 | 24 78 85 | mpjaodan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑘  ∈  ( 𝑃 ‘ 𝑀 )  ↔  𝑘  ∈  ( 𝐴  smul  𝐵 ) ) ) | 
						
							| 87 | 86 | ex | ⊢ ( 𝜑  →  ( 𝑘  ∈  ℕ0  →  ( 𝑘  ∈  ( 𝑃 ‘ 𝑀 )  ↔  𝑘  ∈  ( 𝐴  smul  𝐵 ) ) ) ) | 
						
							| 88 | 12 16 87 | pm5.21ndd | ⊢ ( 𝜑  →  ( 𝑘  ∈  ( 𝑃 ‘ 𝑀 )  ↔  𝑘  ∈  ( 𝐴  smul  𝐵 ) ) ) | 
						
							| 89 | 88 | eqrdv | ⊢ ( 𝜑  →  ( 𝑃 ‘ 𝑀 )  =  ( 𝐴  smul  𝐵 ) ) |