| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl | ⊢ ( ( 𝐴  ⊆  ℕ0  ∧  𝐵  ⊆  ℕ0 )  →  𝐴  ⊆  ℕ0 ) | 
						
							| 2 |  | simpr | ⊢ ( ( 𝐴  ⊆  ℕ0  ∧  𝐵  ⊆  ℕ0 )  →  𝐵  ⊆  ℕ0 ) | 
						
							| 3 |  | eqid | ⊢ seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) )  =  seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) | 
						
							| 4 | 1 2 3 | smufval | ⊢ ( ( 𝐴  ⊆  ℕ0  ∧  𝐵  ⊆  ℕ0 )  →  ( 𝐴  smul  𝐵 )  =  { 𝑘  ∈  ℕ0  ∣  𝑘  ∈  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ ( 𝑘  +  1 ) ) } ) | 
						
							| 5 |  | ssrab2 | ⊢ { 𝑘  ∈  ℕ0  ∣  𝑘  ∈  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ ( 𝑘  +  1 ) ) }  ⊆  ℕ0 | 
						
							| 6 | 4 5 | eqsstrdi | ⊢ ( ( 𝐴  ⊆  ℕ0  ∧  𝐵  ⊆  ℕ0 )  →  ( 𝐴  smul  𝐵 )  ⊆  ℕ0 ) |