Metamath Proof Explorer


Theorem smucl

Description: The product of two sequences is a sequence. (Contributed by Mario Carneiro, 19-Sep-2016)

Ref Expression
Assertion smucl
|- ( ( A C_ NN0 /\ B C_ NN0 ) -> ( A smul B ) C_ NN0 )

Proof

Step Hyp Ref Expression
1 simpl
 |-  ( ( A C_ NN0 /\ B C_ NN0 ) -> A C_ NN0 )
2 simpr
 |-  ( ( A C_ NN0 /\ B C_ NN0 ) -> B C_ NN0 )
3 eqid
 |-  seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. A /\ ( n - m ) e. B ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) = seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. A /\ ( n - m ) e. B ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) )
4 1 2 3 smufval
 |-  ( ( A C_ NN0 /\ B C_ NN0 ) -> ( A smul B ) = { k e. NN0 | k e. ( seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. A /\ ( n - m ) e. B ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) ` ( k + 1 ) ) } )
5 ssrab2
 |-  { k e. NN0 | k e. ( seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. A /\ ( n - m ) e. B ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) ` ( k + 1 ) ) } C_ NN0
6 4 5 eqsstrdi
 |-  ( ( A C_ NN0 /\ B C_ NN0 ) -> ( A smul B ) C_ NN0 )