Metamath Proof Explorer


Theorem smucl

Description: The product of two sequences is a sequence. (Contributed by Mario Carneiro, 19-Sep-2016)

Ref Expression
Assertion smucl A 0 B 0 A smul B 0

Proof

Step Hyp Ref Expression
1 simpl A 0 B 0 A 0
2 simpr A 0 B 0 B 0
3 eqid seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1 = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1
4 1 2 3 smufval A 0 B 0 A smul B = k 0 | k seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1 k + 1
5 ssrab2 k 0 | k seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1 k + 1 0
6 4 5 eqsstrdi A 0 B 0 A smul B 0