Metamath Proof Explorer


Theorem smu01lem

Description: Lemma for smu01 and smu02 . (Contributed by Mario Carneiro, 19-Sep-2016)

Ref Expression
Hypotheses smu01lem.1 φ A 0
smu01lem.2 φ B 0
smu01lem.3 φ k 0 n 0 ¬ k A n k B
Assertion smu01lem φ A smul B =

Proof

Step Hyp Ref Expression
1 smu01lem.1 φ A 0
2 smu01lem.2 φ B 0
3 smu01lem.3 φ k 0 n 0 ¬ k A n k B
4 smucl A 0 B 0 A smul B 0
5 1 2 4 syl2anc φ A smul B 0
6 5 sseld φ k A smul B k 0
7 noel ¬ k
8 peano2nn0 k 0 k + 1 0
9 fveqeq2 x = 0 seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1 x = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1 0 =
10 9 imbi2d x = 0 φ seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1 x = φ seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1 0 =
11 fveqeq2 x = k seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1 x = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1 k =
12 11 imbi2d x = k φ seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1 x = φ seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1 k =
13 fveqeq2 x = k + 1 seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1 x = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1 k + 1 =
14 13 imbi2d x = k + 1 φ seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1 x = φ seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1 k + 1 =
15 eqid seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1 = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1
16 1 2 15 smup0 φ seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1 0 =
17 oveq1 seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1 k = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1 k sadd n 0 | k A n k B = sadd n 0 | k A n k B
18 1 adantr φ k 0 A 0
19 2 adantr φ k 0 B 0
20 simpr φ k 0 k 0
21 18 19 15 20 smupp1 φ k 0 seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1 k + 1 = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1 k sadd n 0 | k A n k B
22 3 anassrs φ k 0 n 0 ¬ k A n k B
23 22 ralrimiva φ k 0 n 0 ¬ k A n k B
24 rabeq0 n 0 | k A n k B = n 0 ¬ k A n k B
25 23 24 sylibr φ k 0 n 0 | k A n k B =
26 25 oveq2d φ k 0 sadd n 0 | k A n k B = sadd
27 0ss 0
28 sadid1 0 sadd =
29 27 28 mp1i φ k 0 sadd =
30 26 29 eqtr2d φ k 0 = sadd n 0 | k A n k B
31 21 30 eqeq12d φ k 0 seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1 k + 1 = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1 k sadd n 0 | k A n k B = sadd n 0 | k A n k B
32 17 31 syl5ibr φ k 0 seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1 k = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1 k + 1 =
33 32 expcom k 0 φ seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1 k = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1 k + 1 =
34 33 a2d k 0 φ seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1 k = φ seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1 k + 1 =
35 10 12 14 14 16 34 nn0ind k + 1 0 φ seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1 k + 1 =
36 8 35 syl k 0 φ seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1 k + 1 =
37 36 impcom φ k 0 seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1 k + 1 =
38 37 eleq2d φ k 0 k seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1 k + 1 k
39 7 38 mtbiri φ k 0 ¬ k seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1 k + 1
40 18 19 15 20 smuval φ k 0 k A smul B k seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1 k + 1
41 39 40 mtbird φ k 0 ¬ k A smul B
42 41 ex φ k 0 ¬ k A smul B
43 6 42 syld φ k A smul B ¬ k A smul B
44 43 pm2.01d φ ¬ k A smul B
45 44 eq0rdv φ A smul B =