| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smu01lem.1 | ⊢ ( 𝜑  →  𝐴  ⊆  ℕ0 ) | 
						
							| 2 |  | smu01lem.2 | ⊢ ( 𝜑  →  𝐵  ⊆  ℕ0 ) | 
						
							| 3 |  | smu01lem.3 | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑛  ∈  ℕ0 ) )  →  ¬  ( 𝑘  ∈  𝐴  ∧  ( 𝑛  −  𝑘 )  ∈  𝐵 ) ) | 
						
							| 4 |  | smucl | ⊢ ( ( 𝐴  ⊆  ℕ0  ∧  𝐵  ⊆  ℕ0 )  →  ( 𝐴  smul  𝐵 )  ⊆  ℕ0 ) | 
						
							| 5 | 1 2 4 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴  smul  𝐵 )  ⊆  ℕ0 ) | 
						
							| 6 | 5 | sseld | ⊢ ( 𝜑  →  ( 𝑘  ∈  ( 𝐴  smul  𝐵 )  →  𝑘  ∈  ℕ0 ) ) | 
						
							| 7 |  | noel | ⊢ ¬  𝑘  ∈  ∅ | 
						
							| 8 |  | peano2nn0 | ⊢ ( 𝑘  ∈  ℕ0  →  ( 𝑘  +  1 )  ∈  ℕ0 ) | 
						
							| 9 |  | fveqeq2 | ⊢ ( 𝑥  =  0  →  ( ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 𝑥 )  =  ∅  ↔  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 0 )  =  ∅ ) ) | 
						
							| 10 | 9 | imbi2d | ⊢ ( 𝑥  =  0  →  ( ( 𝜑  →  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 𝑥 )  =  ∅ )  ↔  ( 𝜑  →  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 0 )  =  ∅ ) ) ) | 
						
							| 11 |  | fveqeq2 | ⊢ ( 𝑥  =  𝑘  →  ( ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 𝑥 )  =  ∅  ↔  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 𝑘 )  =  ∅ ) ) | 
						
							| 12 | 11 | imbi2d | ⊢ ( 𝑥  =  𝑘  →  ( ( 𝜑  →  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 𝑥 )  =  ∅ )  ↔  ( 𝜑  →  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 𝑘 )  =  ∅ ) ) ) | 
						
							| 13 |  | fveqeq2 | ⊢ ( 𝑥  =  ( 𝑘  +  1 )  →  ( ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 𝑥 )  =  ∅  ↔  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ ( 𝑘  +  1 ) )  =  ∅ ) ) | 
						
							| 14 | 13 | imbi2d | ⊢ ( 𝑥  =  ( 𝑘  +  1 )  →  ( ( 𝜑  →  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 𝑥 )  =  ∅ )  ↔  ( 𝜑  →  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ ( 𝑘  +  1 ) )  =  ∅ ) ) ) | 
						
							| 15 |  | eqid | ⊢ seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) )  =  seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) | 
						
							| 16 | 1 2 15 | smup0 | ⊢ ( 𝜑  →  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 0 )  =  ∅ ) | 
						
							| 17 |  | oveq1 | ⊢ ( ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 𝑘 )  =  ∅  →  ( ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 𝑘 )  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑘  ∈  𝐴  ∧  ( 𝑛  −  𝑘 )  ∈  𝐵 ) } )  =  ( ∅  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑘  ∈  𝐴  ∧  ( 𝑛  −  𝑘 )  ∈  𝐵 ) } ) ) | 
						
							| 18 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  𝐴  ⊆  ℕ0 ) | 
						
							| 19 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  𝐵  ⊆  ℕ0 ) | 
						
							| 20 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 21 | 18 19 15 20 | smupp1 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ ( 𝑘  +  1 ) )  =  ( ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 𝑘 )  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑘  ∈  𝐴  ∧  ( 𝑛  −  𝑘 )  ∈  𝐵 ) } ) ) | 
						
							| 22 | 3 | anassrs | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ0 )  →  ¬  ( 𝑘  ∈  𝐴  ∧  ( 𝑛  −  𝑘 )  ∈  𝐵 ) ) | 
						
							| 23 | 22 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ∀ 𝑛  ∈  ℕ0 ¬  ( 𝑘  ∈  𝐴  ∧  ( 𝑛  −  𝑘 )  ∈  𝐵 ) ) | 
						
							| 24 |  | rabeq0 | ⊢ ( { 𝑛  ∈  ℕ0  ∣  ( 𝑘  ∈  𝐴  ∧  ( 𝑛  −  𝑘 )  ∈  𝐵 ) }  =  ∅  ↔  ∀ 𝑛  ∈  ℕ0 ¬  ( 𝑘  ∈  𝐴  ∧  ( 𝑛  −  𝑘 )  ∈  𝐵 ) ) | 
						
							| 25 | 23 24 | sylibr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  { 𝑛  ∈  ℕ0  ∣  ( 𝑘  ∈  𝐴  ∧  ( 𝑛  −  𝑘 )  ∈  𝐵 ) }  =  ∅ ) | 
						
							| 26 | 25 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ∅  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑘  ∈  𝐴  ∧  ( 𝑛  −  𝑘 )  ∈  𝐵 ) } )  =  ( ∅  sadd  ∅ ) ) | 
						
							| 27 |  | 0ss | ⊢ ∅  ⊆  ℕ0 | 
						
							| 28 |  | sadid1 | ⊢ ( ∅  ⊆  ℕ0  →  ( ∅  sadd  ∅ )  =  ∅ ) | 
						
							| 29 | 27 28 | mp1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ∅  sadd  ∅ )  =  ∅ ) | 
						
							| 30 | 26 29 | eqtr2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ∅  =  ( ∅  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑘  ∈  𝐴  ∧  ( 𝑛  −  𝑘 )  ∈  𝐵 ) } ) ) | 
						
							| 31 | 21 30 | eqeq12d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ ( 𝑘  +  1 ) )  =  ∅  ↔  ( ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 𝑘 )  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑘  ∈  𝐴  ∧  ( 𝑛  −  𝑘 )  ∈  𝐵 ) } )  =  ( ∅  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑘  ∈  𝐴  ∧  ( 𝑛  −  𝑘 )  ∈  𝐵 ) } ) ) ) | 
						
							| 32 | 17 31 | imbitrrid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 𝑘 )  =  ∅  →  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ ( 𝑘  +  1 ) )  =  ∅ ) ) | 
						
							| 33 | 32 | expcom | ⊢ ( 𝑘  ∈  ℕ0  →  ( 𝜑  →  ( ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 𝑘 )  =  ∅  →  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ ( 𝑘  +  1 ) )  =  ∅ ) ) ) | 
						
							| 34 | 33 | a2d | ⊢ ( 𝑘  ∈  ℕ0  →  ( ( 𝜑  →  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ 𝑘 )  =  ∅ )  →  ( 𝜑  →  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ ( 𝑘  +  1 ) )  =  ∅ ) ) ) | 
						
							| 35 | 10 12 14 14 16 34 | nn0ind | ⊢ ( ( 𝑘  +  1 )  ∈  ℕ0  →  ( 𝜑  →  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ ( 𝑘  +  1 ) )  =  ∅ ) ) | 
						
							| 36 | 8 35 | syl | ⊢ ( 𝑘  ∈  ℕ0  →  ( 𝜑  →  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ ( 𝑘  +  1 ) )  =  ∅ ) ) | 
						
							| 37 | 36 | impcom | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ ( 𝑘  +  1 ) )  =  ∅ ) | 
						
							| 38 | 37 | eleq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑘  ∈  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ ( 𝑘  +  1 ) )  ↔  𝑘  ∈  ∅ ) ) | 
						
							| 39 | 7 38 | mtbiri | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ¬  𝑘  ∈  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 40 | 18 19 15 20 | smuval | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑘  ∈  ( 𝐴  smul  𝐵 )  ↔  𝑘  ∈  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 41 | 39 40 | mtbird | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ¬  𝑘  ∈  ( 𝐴  smul  𝐵 ) ) | 
						
							| 42 | 41 | ex | ⊢ ( 𝜑  →  ( 𝑘  ∈  ℕ0  →  ¬  𝑘  ∈  ( 𝐴  smul  𝐵 ) ) ) | 
						
							| 43 | 6 42 | syld | ⊢ ( 𝜑  →  ( 𝑘  ∈  ( 𝐴  smul  𝐵 )  →  ¬  𝑘  ∈  ( 𝐴  smul  𝐵 ) ) ) | 
						
							| 44 | 43 | pm2.01d | ⊢ ( 𝜑  →  ¬  𝑘  ∈  ( 𝐴  smul  𝐵 ) ) | 
						
							| 45 | 44 | eq0rdv | ⊢ ( 𝜑  →  ( 𝐴  smul  𝐵 )  =  ∅ ) |