| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smuval.a |  |-  ( ph -> A C_ NN0 ) | 
						
							| 2 |  | smuval.b |  |-  ( ph -> B C_ NN0 ) | 
						
							| 3 |  | smuval.p |  |-  P = seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. A /\ ( n - m ) e. B ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) | 
						
							| 4 |  | smuval.n |  |-  ( ph -> N e. NN0 ) | 
						
							| 5 |  | smupvallem.a |  |-  ( ph -> A C_ ( 0 ..^ N ) ) | 
						
							| 6 |  | smupvallem.m |  |-  ( ph -> M e. ( ZZ>= ` N ) ) | 
						
							| 7 | 1 2 3 | smupf |  |-  ( ph -> P : NN0 --> ~P NN0 ) | 
						
							| 8 |  | eluznn0 |  |-  ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) ) -> M e. NN0 ) | 
						
							| 9 | 4 6 8 | syl2anc |  |-  ( ph -> M e. NN0 ) | 
						
							| 10 | 7 9 | ffvelcdmd |  |-  ( ph -> ( P ` M ) e. ~P NN0 ) | 
						
							| 11 | 10 | elpwid |  |-  ( ph -> ( P ` M ) C_ NN0 ) | 
						
							| 12 | 11 | sseld |  |-  ( ph -> ( k e. ( P ` M ) -> k e. NN0 ) ) | 
						
							| 13 | 1 2 3 | smufval |  |-  ( ph -> ( A smul B ) = { k e. NN0 | k e. ( P ` ( k + 1 ) ) } ) | 
						
							| 14 |  | ssrab2 |  |-  { k e. NN0 | k e. ( P ` ( k + 1 ) ) } C_ NN0 | 
						
							| 15 | 13 14 | eqsstrdi |  |-  ( ph -> ( A smul B ) C_ NN0 ) | 
						
							| 16 | 15 | sseld |  |-  ( ph -> ( k e. ( A smul B ) -> k e. NN0 ) ) | 
						
							| 17 | 1 | ad2antrr |  |-  ( ( ( ph /\ k e. NN0 ) /\ N e. ( ZZ>= ` ( k + 1 ) ) ) -> A C_ NN0 ) | 
						
							| 18 | 2 | ad2antrr |  |-  ( ( ( ph /\ k e. NN0 ) /\ N e. ( ZZ>= ` ( k + 1 ) ) ) -> B C_ NN0 ) | 
						
							| 19 |  | simplr |  |-  ( ( ( ph /\ k e. NN0 ) /\ N e. ( ZZ>= ` ( k + 1 ) ) ) -> k e. NN0 ) | 
						
							| 20 | 6 | adantr |  |-  ( ( ph /\ k e. NN0 ) -> M e. ( ZZ>= ` N ) ) | 
						
							| 21 |  | uztrn |  |-  ( ( M e. ( ZZ>= ` N ) /\ N e. ( ZZ>= ` ( k + 1 ) ) ) -> M e. ( ZZ>= ` ( k + 1 ) ) ) | 
						
							| 22 | 20 21 | sylan |  |-  ( ( ( ph /\ k e. NN0 ) /\ N e. ( ZZ>= ` ( k + 1 ) ) ) -> M e. ( ZZ>= ` ( k + 1 ) ) ) | 
						
							| 23 | 17 18 3 19 22 | smuval2 |  |-  ( ( ( ph /\ k e. NN0 ) /\ N e. ( ZZ>= ` ( k + 1 ) ) ) -> ( k e. ( A smul B ) <-> k e. ( P ` M ) ) ) | 
						
							| 24 | 23 | bicomd |  |-  ( ( ( ph /\ k e. NN0 ) /\ N e. ( ZZ>= ` ( k + 1 ) ) ) -> ( k e. ( P ` M ) <-> k e. ( A smul B ) ) ) | 
						
							| 25 | 6 | ad2antrr |  |-  ( ( ( ph /\ k e. NN0 ) /\ ( k + 1 ) e. ( ZZ>= ` N ) ) -> M e. ( ZZ>= ` N ) ) | 
						
							| 26 |  | simpll |  |-  ( ( ( ph /\ k e. NN0 ) /\ ( k + 1 ) e. ( ZZ>= ` N ) ) -> ph ) | 
						
							| 27 |  | fveqeq2 |  |-  ( x = N -> ( ( P ` x ) = ( P ` N ) <-> ( P ` N ) = ( P ` N ) ) ) | 
						
							| 28 | 27 | imbi2d |  |-  ( x = N -> ( ( ph -> ( P ` x ) = ( P ` N ) ) <-> ( ph -> ( P ` N ) = ( P ` N ) ) ) ) | 
						
							| 29 |  | fveqeq2 |  |-  ( x = k -> ( ( P ` x ) = ( P ` N ) <-> ( P ` k ) = ( P ` N ) ) ) | 
						
							| 30 | 29 | imbi2d |  |-  ( x = k -> ( ( ph -> ( P ` x ) = ( P ` N ) ) <-> ( ph -> ( P ` k ) = ( P ` N ) ) ) ) | 
						
							| 31 |  | fveqeq2 |  |-  ( x = ( k + 1 ) -> ( ( P ` x ) = ( P ` N ) <-> ( P ` ( k + 1 ) ) = ( P ` N ) ) ) | 
						
							| 32 | 31 | imbi2d |  |-  ( x = ( k + 1 ) -> ( ( ph -> ( P ` x ) = ( P ` N ) ) <-> ( ph -> ( P ` ( k + 1 ) ) = ( P ` N ) ) ) ) | 
						
							| 33 |  | fveqeq2 |  |-  ( x = M -> ( ( P ` x ) = ( P ` N ) <-> ( P ` M ) = ( P ` N ) ) ) | 
						
							| 34 | 33 | imbi2d |  |-  ( x = M -> ( ( ph -> ( P ` x ) = ( P ` N ) ) <-> ( ph -> ( P ` M ) = ( P ` N ) ) ) ) | 
						
							| 35 |  | eqidd |  |-  ( ph -> ( P ` N ) = ( P ` N ) ) | 
						
							| 36 | 1 | adantr |  |-  ( ( ph /\ k e. ( ZZ>= ` N ) ) -> A C_ NN0 ) | 
						
							| 37 | 2 | adantr |  |-  ( ( ph /\ k e. ( ZZ>= ` N ) ) -> B C_ NN0 ) | 
						
							| 38 |  | eluznn0 |  |-  ( ( N e. NN0 /\ k e. ( ZZ>= ` N ) ) -> k e. NN0 ) | 
						
							| 39 | 4 38 | sylan |  |-  ( ( ph /\ k e. ( ZZ>= ` N ) ) -> k e. NN0 ) | 
						
							| 40 | 36 37 3 39 | smupp1 |  |-  ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( P ` ( k + 1 ) ) = ( ( P ` k ) sadd { n e. NN0 | ( k e. A /\ ( n - k ) e. B ) } ) ) | 
						
							| 41 | 4 | nn0red |  |-  ( ph -> N e. RR ) | 
						
							| 42 | 41 | adantr |  |-  ( ( ph /\ k e. ( ZZ>= ` N ) ) -> N e. RR ) | 
						
							| 43 | 39 | nn0red |  |-  ( ( ph /\ k e. ( ZZ>= ` N ) ) -> k e. RR ) | 
						
							| 44 |  | eluzle |  |-  ( k e. ( ZZ>= ` N ) -> N <_ k ) | 
						
							| 45 | 44 | adantl |  |-  ( ( ph /\ k e. ( ZZ>= ` N ) ) -> N <_ k ) | 
						
							| 46 | 42 43 45 | lensymd |  |-  ( ( ph /\ k e. ( ZZ>= ` N ) ) -> -. k < N ) | 
						
							| 47 | 5 | adantr |  |-  ( ( ph /\ k e. ( ZZ>= ` N ) ) -> A C_ ( 0 ..^ N ) ) | 
						
							| 48 | 47 | sseld |  |-  ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( k e. A -> k e. ( 0 ..^ N ) ) ) | 
						
							| 49 |  | elfzolt2 |  |-  ( k e. ( 0 ..^ N ) -> k < N ) | 
						
							| 50 | 48 49 | syl6 |  |-  ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( k e. A -> k < N ) ) | 
						
							| 51 | 50 | adantrd |  |-  ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( ( k e. A /\ ( n - k ) e. B ) -> k < N ) ) | 
						
							| 52 | 46 51 | mtod |  |-  ( ( ph /\ k e. ( ZZ>= ` N ) ) -> -. ( k e. A /\ ( n - k ) e. B ) ) | 
						
							| 53 | 52 | ralrimivw |  |-  ( ( ph /\ k e. ( ZZ>= ` N ) ) -> A. n e. NN0 -. ( k e. A /\ ( n - k ) e. B ) ) | 
						
							| 54 |  | rabeq0 |  |-  ( { n e. NN0 | ( k e. A /\ ( n - k ) e. B ) } = (/) <-> A. n e. NN0 -. ( k e. A /\ ( n - k ) e. B ) ) | 
						
							| 55 | 53 54 | sylibr |  |-  ( ( ph /\ k e. ( ZZ>= ` N ) ) -> { n e. NN0 | ( k e. A /\ ( n - k ) e. B ) } = (/) ) | 
						
							| 56 | 55 | oveq2d |  |-  ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( ( P ` k ) sadd { n e. NN0 | ( k e. A /\ ( n - k ) e. B ) } ) = ( ( P ` k ) sadd (/) ) ) | 
						
							| 57 | 7 | adantr |  |-  ( ( ph /\ k e. ( ZZ>= ` N ) ) -> P : NN0 --> ~P NN0 ) | 
						
							| 58 | 57 39 | ffvelcdmd |  |-  ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( P ` k ) e. ~P NN0 ) | 
						
							| 59 | 58 | elpwid |  |-  ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( P ` k ) C_ NN0 ) | 
						
							| 60 |  | sadid1 |  |-  ( ( P ` k ) C_ NN0 -> ( ( P ` k ) sadd (/) ) = ( P ` k ) ) | 
						
							| 61 | 59 60 | syl |  |-  ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( ( P ` k ) sadd (/) ) = ( P ` k ) ) | 
						
							| 62 | 40 56 61 | 3eqtrd |  |-  ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( P ` ( k + 1 ) ) = ( P ` k ) ) | 
						
							| 63 | 62 | eqeq1d |  |-  ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( ( P ` ( k + 1 ) ) = ( P ` N ) <-> ( P ` k ) = ( P ` N ) ) ) | 
						
							| 64 | 63 | biimprd |  |-  ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( ( P ` k ) = ( P ` N ) -> ( P ` ( k + 1 ) ) = ( P ` N ) ) ) | 
						
							| 65 | 64 | expcom |  |-  ( k e. ( ZZ>= ` N ) -> ( ph -> ( ( P ` k ) = ( P ` N ) -> ( P ` ( k + 1 ) ) = ( P ` N ) ) ) ) | 
						
							| 66 | 65 | a2d |  |-  ( k e. ( ZZ>= ` N ) -> ( ( ph -> ( P ` k ) = ( P ` N ) ) -> ( ph -> ( P ` ( k + 1 ) ) = ( P ` N ) ) ) ) | 
						
							| 67 | 28 30 32 34 35 66 | uzind4i |  |-  ( M e. ( ZZ>= ` N ) -> ( ph -> ( P ` M ) = ( P ` N ) ) ) | 
						
							| 68 | 25 26 67 | sylc |  |-  ( ( ( ph /\ k e. NN0 ) /\ ( k + 1 ) e. ( ZZ>= ` N ) ) -> ( P ` M ) = ( P ` N ) ) | 
						
							| 69 |  | simpr |  |-  ( ( ( ph /\ k e. NN0 ) /\ ( k + 1 ) e. ( ZZ>= ` N ) ) -> ( k + 1 ) e. ( ZZ>= ` N ) ) | 
						
							| 70 | 28 30 32 32 35 66 | uzind4i |  |-  ( ( k + 1 ) e. ( ZZ>= ` N ) -> ( ph -> ( P ` ( k + 1 ) ) = ( P ` N ) ) ) | 
						
							| 71 | 69 26 70 | sylc |  |-  ( ( ( ph /\ k e. NN0 ) /\ ( k + 1 ) e. ( ZZ>= ` N ) ) -> ( P ` ( k + 1 ) ) = ( P ` N ) ) | 
						
							| 72 | 68 71 | eqtr4d |  |-  ( ( ( ph /\ k e. NN0 ) /\ ( k + 1 ) e. ( ZZ>= ` N ) ) -> ( P ` M ) = ( P ` ( k + 1 ) ) ) | 
						
							| 73 | 72 | eleq2d |  |-  ( ( ( ph /\ k e. NN0 ) /\ ( k + 1 ) e. ( ZZ>= ` N ) ) -> ( k e. ( P ` M ) <-> k e. ( P ` ( k + 1 ) ) ) ) | 
						
							| 74 | 1 | ad2antrr |  |-  ( ( ( ph /\ k e. NN0 ) /\ ( k + 1 ) e. ( ZZ>= ` N ) ) -> A C_ NN0 ) | 
						
							| 75 | 2 | ad2antrr |  |-  ( ( ( ph /\ k e. NN0 ) /\ ( k + 1 ) e. ( ZZ>= ` N ) ) -> B C_ NN0 ) | 
						
							| 76 |  | simplr |  |-  ( ( ( ph /\ k e. NN0 ) /\ ( k + 1 ) e. ( ZZ>= ` N ) ) -> k e. NN0 ) | 
						
							| 77 | 74 75 3 76 | smuval |  |-  ( ( ( ph /\ k e. NN0 ) /\ ( k + 1 ) e. ( ZZ>= ` N ) ) -> ( k e. ( A smul B ) <-> k e. ( P ` ( k + 1 ) ) ) ) | 
						
							| 78 | 73 77 | bitr4d |  |-  ( ( ( ph /\ k e. NN0 ) /\ ( k + 1 ) e. ( ZZ>= ` N ) ) -> ( k e. ( P ` M ) <-> k e. ( A smul B ) ) ) | 
						
							| 79 |  | simpr |  |-  ( ( ph /\ k e. NN0 ) -> k e. NN0 ) | 
						
							| 80 | 79 | nn0zd |  |-  ( ( ph /\ k e. NN0 ) -> k e. ZZ ) | 
						
							| 81 | 80 | peano2zd |  |-  ( ( ph /\ k e. NN0 ) -> ( k + 1 ) e. ZZ ) | 
						
							| 82 | 4 | nn0zd |  |-  ( ph -> N e. ZZ ) | 
						
							| 83 | 82 | adantr |  |-  ( ( ph /\ k e. NN0 ) -> N e. ZZ ) | 
						
							| 84 |  | uztric |  |-  ( ( ( k + 1 ) e. ZZ /\ N e. ZZ ) -> ( N e. ( ZZ>= ` ( k + 1 ) ) \/ ( k + 1 ) e. ( ZZ>= ` N ) ) ) | 
						
							| 85 | 81 83 84 | syl2anc |  |-  ( ( ph /\ k e. NN0 ) -> ( N e. ( ZZ>= ` ( k + 1 ) ) \/ ( k + 1 ) e. ( ZZ>= ` N ) ) ) | 
						
							| 86 | 24 78 85 | mpjaodan |  |-  ( ( ph /\ k e. NN0 ) -> ( k e. ( P ` M ) <-> k e. ( A smul B ) ) ) | 
						
							| 87 | 86 | ex |  |-  ( ph -> ( k e. NN0 -> ( k e. ( P ` M ) <-> k e. ( A smul B ) ) ) ) | 
						
							| 88 | 12 16 87 | pm5.21ndd |  |-  ( ph -> ( k e. ( P ` M ) <-> k e. ( A smul B ) ) ) | 
						
							| 89 | 88 | eqrdv |  |-  ( ph -> ( P ` M ) = ( A smul B ) ) |