Step |
Hyp |
Ref |
Expression |
1 |
|
smuval.a |
|
2 |
|
smuval.b |
|
3 |
|
smuval.p |
|
4 |
|
smuval.n |
|
5 |
|
smupvallem.a |
|
6 |
|
smupvallem.m |
|
7 |
1 2 3
|
smupf |
|
8 |
|
eluznn0 |
|
9 |
4 6 8
|
syl2anc |
|
10 |
7 9
|
ffvelrnd |
|
11 |
10
|
elpwid |
|
12 |
11
|
sseld |
|
13 |
1 2 3
|
smufval |
|
14 |
|
ssrab2 |
|
15 |
13 14
|
eqsstrdi |
|
16 |
15
|
sseld |
|
17 |
1
|
ad2antrr |
|
18 |
2
|
ad2antrr |
|
19 |
|
simplr |
|
20 |
6
|
adantr |
|
21 |
|
uztrn |
|
22 |
20 21
|
sylan |
|
23 |
17 18 3 19 22
|
smuval2 |
|
24 |
23
|
bicomd |
|
25 |
6
|
ad2antrr |
|
26 |
|
simpll |
|
27 |
|
fveqeq2 |
|
28 |
27
|
imbi2d |
|
29 |
|
fveqeq2 |
|
30 |
29
|
imbi2d |
|
31 |
|
fveqeq2 |
|
32 |
31
|
imbi2d |
|
33 |
|
fveqeq2 |
|
34 |
33
|
imbi2d |
|
35 |
|
eqidd |
|
36 |
1
|
adantr |
|
37 |
2
|
adantr |
|
38 |
|
eluznn0 |
|
39 |
4 38
|
sylan |
|
40 |
36 37 3 39
|
smupp1 |
|
41 |
4
|
nn0red |
|
42 |
41
|
adantr |
|
43 |
39
|
nn0red |
|
44 |
|
eluzle |
|
45 |
44
|
adantl |
|
46 |
42 43 45
|
lensymd |
|
47 |
5
|
adantr |
|
48 |
47
|
sseld |
|
49 |
|
elfzolt2 |
|
50 |
48 49
|
syl6 |
|
51 |
50
|
adantrd |
|
52 |
46 51
|
mtod |
|
53 |
52
|
ralrimivw |
|
54 |
|
rabeq0 |
|
55 |
53 54
|
sylibr |
|
56 |
55
|
oveq2d |
|
57 |
7
|
adantr |
|
58 |
57 39
|
ffvelrnd |
|
59 |
58
|
elpwid |
|
60 |
|
sadid1 |
|
61 |
59 60
|
syl |
|
62 |
40 56 61
|
3eqtrd |
|
63 |
62
|
eqeq1d |
|
64 |
63
|
biimprd |
|
65 |
64
|
expcom |
|
66 |
65
|
a2d |
|
67 |
28 30 32 34 35 66
|
uzind4i |
|
68 |
25 26 67
|
sylc |
|
69 |
|
simpr |
|
70 |
28 30 32 32 35 66
|
uzind4i |
|
71 |
69 26 70
|
sylc |
|
72 |
68 71
|
eqtr4d |
|
73 |
72
|
eleq2d |
|
74 |
1
|
ad2antrr |
|
75 |
2
|
ad2antrr |
|
76 |
|
simplr |
|
77 |
74 75 3 76
|
smuval |
|
78 |
73 77
|
bitr4d |
|
79 |
|
simpr |
|
80 |
79
|
nn0zd |
|
81 |
80
|
peano2zd |
|
82 |
4
|
nn0zd |
|
83 |
82
|
adantr |
|
84 |
|
uztric |
|
85 |
81 83 84
|
syl2anc |
|
86 |
24 78 85
|
mpjaodan |
|
87 |
86
|
ex |
|
88 |
12 16 87
|
pm5.21ndd |
|
89 |
88
|
eqrdv |
|