Metamath Proof Explorer


Theorem smueq

Description: Any element of a sequence multiplication only depends on the values of the argument sequences up to and including that point. (Contributed by Mario Carneiro, 20-Sep-2016)

Ref Expression
Hypotheses smueq.a φ A 0
smueq.b φ B 0
smueq.n φ N 0
Assertion smueq φ A smul B 0 ..^ N = A 0 ..^ N smul B 0 ..^ N 0 ..^ N

Proof

Step Hyp Ref Expression
1 smueq.a φ A 0
2 smueq.b φ B 0
3 smueq.n φ N 0
4 eqid seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1 = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1
5 eqid seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B 0 ..^ N n 0 if n = 0 n 1 = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B 0 ..^ N n 0 if n = 0 n 1
6 1 2 3 4 5 smueqlem φ A smul B 0 ..^ N = A 0 ..^ N smul B 0 ..^ N 0 ..^ N