Step |
Hyp |
Ref |
Expression |
1 |
|
smumullem.a |
|- ( ph -> A e. ZZ ) |
2 |
|
smumullem.b |
|- ( ph -> B e. ZZ ) |
3 |
|
smumullem.n |
|- ( ph -> N e. NN0 ) |
4 |
|
oveq2 |
|- ( x = 0 -> ( 0 ..^ x ) = ( 0 ..^ 0 ) ) |
5 |
|
fzo0 |
|- ( 0 ..^ 0 ) = (/) |
6 |
4 5
|
eqtrdi |
|- ( x = 0 -> ( 0 ..^ x ) = (/) ) |
7 |
6
|
ineq2d |
|- ( x = 0 -> ( ( bits ` A ) i^i ( 0 ..^ x ) ) = ( ( bits ` A ) i^i (/) ) ) |
8 |
|
in0 |
|- ( ( bits ` A ) i^i (/) ) = (/) |
9 |
7 8
|
eqtrdi |
|- ( x = 0 -> ( ( bits ` A ) i^i ( 0 ..^ x ) ) = (/) ) |
10 |
9
|
oveq1d |
|- ( x = 0 -> ( ( ( bits ` A ) i^i ( 0 ..^ x ) ) smul ( bits ` B ) ) = ( (/) smul ( bits ` B ) ) ) |
11 |
|
bitsss |
|- ( bits ` B ) C_ NN0 |
12 |
|
smu02 |
|- ( ( bits ` B ) C_ NN0 -> ( (/) smul ( bits ` B ) ) = (/) ) |
13 |
11 12
|
ax-mp |
|- ( (/) smul ( bits ` B ) ) = (/) |
14 |
10 13
|
eqtrdi |
|- ( x = 0 -> ( ( ( bits ` A ) i^i ( 0 ..^ x ) ) smul ( bits ` B ) ) = (/) ) |
15 |
|
oveq2 |
|- ( x = 0 -> ( 2 ^ x ) = ( 2 ^ 0 ) ) |
16 |
|
2cn |
|- 2 e. CC |
17 |
|
exp0 |
|- ( 2 e. CC -> ( 2 ^ 0 ) = 1 ) |
18 |
16 17
|
ax-mp |
|- ( 2 ^ 0 ) = 1 |
19 |
15 18
|
eqtrdi |
|- ( x = 0 -> ( 2 ^ x ) = 1 ) |
20 |
19
|
oveq2d |
|- ( x = 0 -> ( A mod ( 2 ^ x ) ) = ( A mod 1 ) ) |
21 |
20
|
fvoveq1d |
|- ( x = 0 -> ( bits ` ( ( A mod ( 2 ^ x ) ) x. B ) ) = ( bits ` ( ( A mod 1 ) x. B ) ) ) |
22 |
14 21
|
eqeq12d |
|- ( x = 0 -> ( ( ( ( bits ` A ) i^i ( 0 ..^ x ) ) smul ( bits ` B ) ) = ( bits ` ( ( A mod ( 2 ^ x ) ) x. B ) ) <-> (/) = ( bits ` ( ( A mod 1 ) x. B ) ) ) ) |
23 |
22
|
imbi2d |
|- ( x = 0 -> ( ( ph -> ( ( ( bits ` A ) i^i ( 0 ..^ x ) ) smul ( bits ` B ) ) = ( bits ` ( ( A mod ( 2 ^ x ) ) x. B ) ) ) <-> ( ph -> (/) = ( bits ` ( ( A mod 1 ) x. B ) ) ) ) ) |
24 |
|
oveq2 |
|- ( x = k -> ( 0 ..^ x ) = ( 0 ..^ k ) ) |
25 |
24
|
ineq2d |
|- ( x = k -> ( ( bits ` A ) i^i ( 0 ..^ x ) ) = ( ( bits ` A ) i^i ( 0 ..^ k ) ) ) |
26 |
25
|
oveq1d |
|- ( x = k -> ( ( ( bits ` A ) i^i ( 0 ..^ x ) ) smul ( bits ` B ) ) = ( ( ( bits ` A ) i^i ( 0 ..^ k ) ) smul ( bits ` B ) ) ) |
27 |
|
oveq2 |
|- ( x = k -> ( 2 ^ x ) = ( 2 ^ k ) ) |
28 |
27
|
oveq2d |
|- ( x = k -> ( A mod ( 2 ^ x ) ) = ( A mod ( 2 ^ k ) ) ) |
29 |
28
|
fvoveq1d |
|- ( x = k -> ( bits ` ( ( A mod ( 2 ^ x ) ) x. B ) ) = ( bits ` ( ( A mod ( 2 ^ k ) ) x. B ) ) ) |
30 |
26 29
|
eqeq12d |
|- ( x = k -> ( ( ( ( bits ` A ) i^i ( 0 ..^ x ) ) smul ( bits ` B ) ) = ( bits ` ( ( A mod ( 2 ^ x ) ) x. B ) ) <-> ( ( ( bits ` A ) i^i ( 0 ..^ k ) ) smul ( bits ` B ) ) = ( bits ` ( ( A mod ( 2 ^ k ) ) x. B ) ) ) ) |
31 |
30
|
imbi2d |
|- ( x = k -> ( ( ph -> ( ( ( bits ` A ) i^i ( 0 ..^ x ) ) smul ( bits ` B ) ) = ( bits ` ( ( A mod ( 2 ^ x ) ) x. B ) ) ) <-> ( ph -> ( ( ( bits ` A ) i^i ( 0 ..^ k ) ) smul ( bits ` B ) ) = ( bits ` ( ( A mod ( 2 ^ k ) ) x. B ) ) ) ) ) |
32 |
|
oveq2 |
|- ( x = ( k + 1 ) -> ( 0 ..^ x ) = ( 0 ..^ ( k + 1 ) ) ) |
33 |
32
|
ineq2d |
|- ( x = ( k + 1 ) -> ( ( bits ` A ) i^i ( 0 ..^ x ) ) = ( ( bits ` A ) i^i ( 0 ..^ ( k + 1 ) ) ) ) |
34 |
33
|
oveq1d |
|- ( x = ( k + 1 ) -> ( ( ( bits ` A ) i^i ( 0 ..^ x ) ) smul ( bits ` B ) ) = ( ( ( bits ` A ) i^i ( 0 ..^ ( k + 1 ) ) ) smul ( bits ` B ) ) ) |
35 |
|
oveq2 |
|- ( x = ( k + 1 ) -> ( 2 ^ x ) = ( 2 ^ ( k + 1 ) ) ) |
36 |
35
|
oveq2d |
|- ( x = ( k + 1 ) -> ( A mod ( 2 ^ x ) ) = ( A mod ( 2 ^ ( k + 1 ) ) ) ) |
37 |
36
|
fvoveq1d |
|- ( x = ( k + 1 ) -> ( bits ` ( ( A mod ( 2 ^ x ) ) x. B ) ) = ( bits ` ( ( A mod ( 2 ^ ( k + 1 ) ) ) x. B ) ) ) |
38 |
34 37
|
eqeq12d |
|- ( x = ( k + 1 ) -> ( ( ( ( bits ` A ) i^i ( 0 ..^ x ) ) smul ( bits ` B ) ) = ( bits ` ( ( A mod ( 2 ^ x ) ) x. B ) ) <-> ( ( ( bits ` A ) i^i ( 0 ..^ ( k + 1 ) ) ) smul ( bits ` B ) ) = ( bits ` ( ( A mod ( 2 ^ ( k + 1 ) ) ) x. B ) ) ) ) |
39 |
38
|
imbi2d |
|- ( x = ( k + 1 ) -> ( ( ph -> ( ( ( bits ` A ) i^i ( 0 ..^ x ) ) smul ( bits ` B ) ) = ( bits ` ( ( A mod ( 2 ^ x ) ) x. B ) ) ) <-> ( ph -> ( ( ( bits ` A ) i^i ( 0 ..^ ( k + 1 ) ) ) smul ( bits ` B ) ) = ( bits ` ( ( A mod ( 2 ^ ( k + 1 ) ) ) x. B ) ) ) ) ) |
40 |
|
oveq2 |
|- ( x = N -> ( 0 ..^ x ) = ( 0 ..^ N ) ) |
41 |
40
|
ineq2d |
|- ( x = N -> ( ( bits ` A ) i^i ( 0 ..^ x ) ) = ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) |
42 |
41
|
oveq1d |
|- ( x = N -> ( ( ( bits ` A ) i^i ( 0 ..^ x ) ) smul ( bits ` B ) ) = ( ( ( bits ` A ) i^i ( 0 ..^ N ) ) smul ( bits ` B ) ) ) |
43 |
|
oveq2 |
|- ( x = N -> ( 2 ^ x ) = ( 2 ^ N ) ) |
44 |
43
|
oveq2d |
|- ( x = N -> ( A mod ( 2 ^ x ) ) = ( A mod ( 2 ^ N ) ) ) |
45 |
44
|
fvoveq1d |
|- ( x = N -> ( bits ` ( ( A mod ( 2 ^ x ) ) x. B ) ) = ( bits ` ( ( A mod ( 2 ^ N ) ) x. B ) ) ) |
46 |
42 45
|
eqeq12d |
|- ( x = N -> ( ( ( ( bits ` A ) i^i ( 0 ..^ x ) ) smul ( bits ` B ) ) = ( bits ` ( ( A mod ( 2 ^ x ) ) x. B ) ) <-> ( ( ( bits ` A ) i^i ( 0 ..^ N ) ) smul ( bits ` B ) ) = ( bits ` ( ( A mod ( 2 ^ N ) ) x. B ) ) ) ) |
47 |
46
|
imbi2d |
|- ( x = N -> ( ( ph -> ( ( ( bits ` A ) i^i ( 0 ..^ x ) ) smul ( bits ` B ) ) = ( bits ` ( ( A mod ( 2 ^ x ) ) x. B ) ) ) <-> ( ph -> ( ( ( bits ` A ) i^i ( 0 ..^ N ) ) smul ( bits ` B ) ) = ( bits ` ( ( A mod ( 2 ^ N ) ) x. B ) ) ) ) ) |
48 |
|
zmod10 |
|- ( A e. ZZ -> ( A mod 1 ) = 0 ) |
49 |
1 48
|
syl |
|- ( ph -> ( A mod 1 ) = 0 ) |
50 |
49
|
oveq1d |
|- ( ph -> ( ( A mod 1 ) x. B ) = ( 0 x. B ) ) |
51 |
2
|
zcnd |
|- ( ph -> B e. CC ) |
52 |
51
|
mul02d |
|- ( ph -> ( 0 x. B ) = 0 ) |
53 |
50 52
|
eqtrd |
|- ( ph -> ( ( A mod 1 ) x. B ) = 0 ) |
54 |
53
|
fveq2d |
|- ( ph -> ( bits ` ( ( A mod 1 ) x. B ) ) = ( bits ` 0 ) ) |
55 |
|
0bits |
|- ( bits ` 0 ) = (/) |
56 |
54 55
|
eqtr2di |
|- ( ph -> (/) = ( bits ` ( ( A mod 1 ) x. B ) ) ) |
57 |
|
oveq1 |
|- ( ( ( ( bits ` A ) i^i ( 0 ..^ k ) ) smul ( bits ` B ) ) = ( bits ` ( ( A mod ( 2 ^ k ) ) x. B ) ) -> ( ( ( ( bits ` A ) i^i ( 0 ..^ k ) ) smul ( bits ` B ) ) sadd { n e. NN0 | ( k e. ( bits ` A ) /\ ( n - k ) e. ( bits ` B ) ) } ) = ( ( bits ` ( ( A mod ( 2 ^ k ) ) x. B ) ) sadd { n e. NN0 | ( k e. ( bits ` A ) /\ ( n - k ) e. ( bits ` B ) ) } ) ) |
58 |
|
bitsss |
|- ( bits ` A ) C_ NN0 |
59 |
58
|
a1i |
|- ( ( ph /\ k e. NN0 ) -> ( bits ` A ) C_ NN0 ) |
60 |
11
|
a1i |
|- ( ( ph /\ k e. NN0 ) -> ( bits ` B ) C_ NN0 ) |
61 |
|
simpr |
|- ( ( ph /\ k e. NN0 ) -> k e. NN0 ) |
62 |
59 60 61
|
smup1 |
|- ( ( ph /\ k e. NN0 ) -> ( ( ( bits ` A ) i^i ( 0 ..^ ( k + 1 ) ) ) smul ( bits ` B ) ) = ( ( ( ( bits ` A ) i^i ( 0 ..^ k ) ) smul ( bits ` B ) ) sadd { n e. NN0 | ( k e. ( bits ` A ) /\ ( n - k ) e. ( bits ` B ) ) } ) ) |
63 |
|
bitsinv1lem |
|- ( ( A e. ZZ /\ k e. NN0 ) -> ( A mod ( 2 ^ ( k + 1 ) ) ) = ( ( A mod ( 2 ^ k ) ) + if ( k e. ( bits ` A ) , ( 2 ^ k ) , 0 ) ) ) |
64 |
1 63
|
sylan |
|- ( ( ph /\ k e. NN0 ) -> ( A mod ( 2 ^ ( k + 1 ) ) ) = ( ( A mod ( 2 ^ k ) ) + if ( k e. ( bits ` A ) , ( 2 ^ k ) , 0 ) ) ) |
65 |
64
|
oveq1d |
|- ( ( ph /\ k e. NN0 ) -> ( ( A mod ( 2 ^ ( k + 1 ) ) ) x. B ) = ( ( ( A mod ( 2 ^ k ) ) + if ( k e. ( bits ` A ) , ( 2 ^ k ) , 0 ) ) x. B ) ) |
66 |
1
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> A e. ZZ ) |
67 |
|
2nn |
|- 2 e. NN |
68 |
67
|
a1i |
|- ( ( ph /\ k e. NN0 ) -> 2 e. NN ) |
69 |
68 61
|
nnexpcld |
|- ( ( ph /\ k e. NN0 ) -> ( 2 ^ k ) e. NN ) |
70 |
66 69
|
zmodcld |
|- ( ( ph /\ k e. NN0 ) -> ( A mod ( 2 ^ k ) ) e. NN0 ) |
71 |
70
|
nn0cnd |
|- ( ( ph /\ k e. NN0 ) -> ( A mod ( 2 ^ k ) ) e. CC ) |
72 |
69
|
nnnn0d |
|- ( ( ph /\ k e. NN0 ) -> ( 2 ^ k ) e. NN0 ) |
73 |
|
0nn0 |
|- 0 e. NN0 |
74 |
|
ifcl |
|- ( ( ( 2 ^ k ) e. NN0 /\ 0 e. NN0 ) -> if ( k e. ( bits ` A ) , ( 2 ^ k ) , 0 ) e. NN0 ) |
75 |
72 73 74
|
sylancl |
|- ( ( ph /\ k e. NN0 ) -> if ( k e. ( bits ` A ) , ( 2 ^ k ) , 0 ) e. NN0 ) |
76 |
75
|
nn0cnd |
|- ( ( ph /\ k e. NN0 ) -> if ( k e. ( bits ` A ) , ( 2 ^ k ) , 0 ) e. CC ) |
77 |
51
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> B e. CC ) |
78 |
71 76 77
|
adddird |
|- ( ( ph /\ k e. NN0 ) -> ( ( ( A mod ( 2 ^ k ) ) + if ( k e. ( bits ` A ) , ( 2 ^ k ) , 0 ) ) x. B ) = ( ( ( A mod ( 2 ^ k ) ) x. B ) + ( if ( k e. ( bits ` A ) , ( 2 ^ k ) , 0 ) x. B ) ) ) |
79 |
76 77
|
mulcomd |
|- ( ( ph /\ k e. NN0 ) -> ( if ( k e. ( bits ` A ) , ( 2 ^ k ) , 0 ) x. B ) = ( B x. if ( k e. ( bits ` A ) , ( 2 ^ k ) , 0 ) ) ) |
80 |
79
|
oveq2d |
|- ( ( ph /\ k e. NN0 ) -> ( ( ( A mod ( 2 ^ k ) ) x. B ) + ( if ( k e. ( bits ` A ) , ( 2 ^ k ) , 0 ) x. B ) ) = ( ( ( A mod ( 2 ^ k ) ) x. B ) + ( B x. if ( k e. ( bits ` A ) , ( 2 ^ k ) , 0 ) ) ) ) |
81 |
65 78 80
|
3eqtrd |
|- ( ( ph /\ k e. NN0 ) -> ( ( A mod ( 2 ^ ( k + 1 ) ) ) x. B ) = ( ( ( A mod ( 2 ^ k ) ) x. B ) + ( B x. if ( k e. ( bits ` A ) , ( 2 ^ k ) , 0 ) ) ) ) |
82 |
81
|
fveq2d |
|- ( ( ph /\ k e. NN0 ) -> ( bits ` ( ( A mod ( 2 ^ ( k + 1 ) ) ) x. B ) ) = ( bits ` ( ( ( A mod ( 2 ^ k ) ) x. B ) + ( B x. if ( k e. ( bits ` A ) , ( 2 ^ k ) , 0 ) ) ) ) ) |
83 |
70
|
nn0zd |
|- ( ( ph /\ k e. NN0 ) -> ( A mod ( 2 ^ k ) ) e. ZZ ) |
84 |
2
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> B e. ZZ ) |
85 |
83 84
|
zmulcld |
|- ( ( ph /\ k e. NN0 ) -> ( ( A mod ( 2 ^ k ) ) x. B ) e. ZZ ) |
86 |
75
|
nn0zd |
|- ( ( ph /\ k e. NN0 ) -> if ( k e. ( bits ` A ) , ( 2 ^ k ) , 0 ) e. ZZ ) |
87 |
84 86
|
zmulcld |
|- ( ( ph /\ k e. NN0 ) -> ( B x. if ( k e. ( bits ` A ) , ( 2 ^ k ) , 0 ) ) e. ZZ ) |
88 |
|
sadadd |
|- ( ( ( ( A mod ( 2 ^ k ) ) x. B ) e. ZZ /\ ( B x. if ( k e. ( bits ` A ) , ( 2 ^ k ) , 0 ) ) e. ZZ ) -> ( ( bits ` ( ( A mod ( 2 ^ k ) ) x. B ) ) sadd ( bits ` ( B x. if ( k e. ( bits ` A ) , ( 2 ^ k ) , 0 ) ) ) ) = ( bits ` ( ( ( A mod ( 2 ^ k ) ) x. B ) + ( B x. if ( k e. ( bits ` A ) , ( 2 ^ k ) , 0 ) ) ) ) ) |
89 |
85 87 88
|
syl2anc |
|- ( ( ph /\ k e. NN0 ) -> ( ( bits ` ( ( A mod ( 2 ^ k ) ) x. B ) ) sadd ( bits ` ( B x. if ( k e. ( bits ` A ) , ( 2 ^ k ) , 0 ) ) ) ) = ( bits ` ( ( ( A mod ( 2 ^ k ) ) x. B ) + ( B x. if ( k e. ( bits ` A ) , ( 2 ^ k ) , 0 ) ) ) ) ) |
90 |
|
oveq2 |
|- ( ( 2 ^ k ) = if ( k e. ( bits ` A ) , ( 2 ^ k ) , 0 ) -> ( B x. ( 2 ^ k ) ) = ( B x. if ( k e. ( bits ` A ) , ( 2 ^ k ) , 0 ) ) ) |
91 |
90
|
fveqeq2d |
|- ( ( 2 ^ k ) = if ( k e. ( bits ` A ) , ( 2 ^ k ) , 0 ) -> ( ( bits ` ( B x. ( 2 ^ k ) ) ) = { n e. NN0 | ( k e. ( bits ` A ) /\ ( n - k ) e. ( bits ` B ) ) } <-> ( bits ` ( B x. if ( k e. ( bits ` A ) , ( 2 ^ k ) , 0 ) ) ) = { n e. NN0 | ( k e. ( bits ` A ) /\ ( n - k ) e. ( bits ` B ) ) } ) ) |
92 |
|
oveq2 |
|- ( 0 = if ( k e. ( bits ` A ) , ( 2 ^ k ) , 0 ) -> ( B x. 0 ) = ( B x. if ( k e. ( bits ` A ) , ( 2 ^ k ) , 0 ) ) ) |
93 |
92
|
fveqeq2d |
|- ( 0 = if ( k e. ( bits ` A ) , ( 2 ^ k ) , 0 ) -> ( ( bits ` ( B x. 0 ) ) = { n e. NN0 | ( k e. ( bits ` A ) /\ ( n - k ) e. ( bits ` B ) ) } <-> ( bits ` ( B x. if ( k e. ( bits ` A ) , ( 2 ^ k ) , 0 ) ) ) = { n e. NN0 | ( k e. ( bits ` A ) /\ ( n - k ) e. ( bits ` B ) ) } ) ) |
94 |
|
bitsshft |
|- ( ( B e. ZZ /\ k e. NN0 ) -> { n e. NN0 | ( n - k ) e. ( bits ` B ) } = ( bits ` ( B x. ( 2 ^ k ) ) ) ) |
95 |
2 94
|
sylan |
|- ( ( ph /\ k e. NN0 ) -> { n e. NN0 | ( n - k ) e. ( bits ` B ) } = ( bits ` ( B x. ( 2 ^ k ) ) ) ) |
96 |
|
ibar |
|- ( k e. ( bits ` A ) -> ( ( n - k ) e. ( bits ` B ) <-> ( k e. ( bits ` A ) /\ ( n - k ) e. ( bits ` B ) ) ) ) |
97 |
96
|
rabbidv |
|- ( k e. ( bits ` A ) -> { n e. NN0 | ( n - k ) e. ( bits ` B ) } = { n e. NN0 | ( k e. ( bits ` A ) /\ ( n - k ) e. ( bits ` B ) ) } ) |
98 |
95 97
|
sylan9req |
|- ( ( ( ph /\ k e. NN0 ) /\ k e. ( bits ` A ) ) -> ( bits ` ( B x. ( 2 ^ k ) ) ) = { n e. NN0 | ( k e. ( bits ` A ) /\ ( n - k ) e. ( bits ` B ) ) } ) |
99 |
77
|
adantr |
|- ( ( ( ph /\ k e. NN0 ) /\ -. k e. ( bits ` A ) ) -> B e. CC ) |
100 |
99
|
mul01d |
|- ( ( ( ph /\ k e. NN0 ) /\ -. k e. ( bits ` A ) ) -> ( B x. 0 ) = 0 ) |
101 |
100
|
fveq2d |
|- ( ( ( ph /\ k e. NN0 ) /\ -. k e. ( bits ` A ) ) -> ( bits ` ( B x. 0 ) ) = ( bits ` 0 ) ) |
102 |
|
simpr |
|- ( ( ( ph /\ k e. NN0 ) /\ -. k e. ( bits ` A ) ) -> -. k e. ( bits ` A ) ) |
103 |
102
|
intnanrd |
|- ( ( ( ph /\ k e. NN0 ) /\ -. k e. ( bits ` A ) ) -> -. ( k e. ( bits ` A ) /\ ( n - k ) e. ( bits ` B ) ) ) |
104 |
103
|
ralrimivw |
|- ( ( ( ph /\ k e. NN0 ) /\ -. k e. ( bits ` A ) ) -> A. n e. NN0 -. ( k e. ( bits ` A ) /\ ( n - k ) e. ( bits ` B ) ) ) |
105 |
|
rabeq0 |
|- ( { n e. NN0 | ( k e. ( bits ` A ) /\ ( n - k ) e. ( bits ` B ) ) } = (/) <-> A. n e. NN0 -. ( k e. ( bits ` A ) /\ ( n - k ) e. ( bits ` B ) ) ) |
106 |
104 105
|
sylibr |
|- ( ( ( ph /\ k e. NN0 ) /\ -. k e. ( bits ` A ) ) -> { n e. NN0 | ( k e. ( bits ` A ) /\ ( n - k ) e. ( bits ` B ) ) } = (/) ) |
107 |
55 101 106
|
3eqtr4a |
|- ( ( ( ph /\ k e. NN0 ) /\ -. k e. ( bits ` A ) ) -> ( bits ` ( B x. 0 ) ) = { n e. NN0 | ( k e. ( bits ` A ) /\ ( n - k ) e. ( bits ` B ) ) } ) |
108 |
91 93 98 107
|
ifbothda |
|- ( ( ph /\ k e. NN0 ) -> ( bits ` ( B x. if ( k e. ( bits ` A ) , ( 2 ^ k ) , 0 ) ) ) = { n e. NN0 | ( k e. ( bits ` A ) /\ ( n - k ) e. ( bits ` B ) ) } ) |
109 |
108
|
oveq2d |
|- ( ( ph /\ k e. NN0 ) -> ( ( bits ` ( ( A mod ( 2 ^ k ) ) x. B ) ) sadd ( bits ` ( B x. if ( k e. ( bits ` A ) , ( 2 ^ k ) , 0 ) ) ) ) = ( ( bits ` ( ( A mod ( 2 ^ k ) ) x. B ) ) sadd { n e. NN0 | ( k e. ( bits ` A ) /\ ( n - k ) e. ( bits ` B ) ) } ) ) |
110 |
82 89 109
|
3eqtr2d |
|- ( ( ph /\ k e. NN0 ) -> ( bits ` ( ( A mod ( 2 ^ ( k + 1 ) ) ) x. B ) ) = ( ( bits ` ( ( A mod ( 2 ^ k ) ) x. B ) ) sadd { n e. NN0 | ( k e. ( bits ` A ) /\ ( n - k ) e. ( bits ` B ) ) } ) ) |
111 |
62 110
|
eqeq12d |
|- ( ( ph /\ k e. NN0 ) -> ( ( ( ( bits ` A ) i^i ( 0 ..^ ( k + 1 ) ) ) smul ( bits ` B ) ) = ( bits ` ( ( A mod ( 2 ^ ( k + 1 ) ) ) x. B ) ) <-> ( ( ( ( bits ` A ) i^i ( 0 ..^ k ) ) smul ( bits ` B ) ) sadd { n e. NN0 | ( k e. ( bits ` A ) /\ ( n - k ) e. ( bits ` B ) ) } ) = ( ( bits ` ( ( A mod ( 2 ^ k ) ) x. B ) ) sadd { n e. NN0 | ( k e. ( bits ` A ) /\ ( n - k ) e. ( bits ` B ) ) } ) ) ) |
112 |
57 111
|
syl5ibr |
|- ( ( ph /\ k e. NN0 ) -> ( ( ( ( bits ` A ) i^i ( 0 ..^ k ) ) smul ( bits ` B ) ) = ( bits ` ( ( A mod ( 2 ^ k ) ) x. B ) ) -> ( ( ( bits ` A ) i^i ( 0 ..^ ( k + 1 ) ) ) smul ( bits ` B ) ) = ( bits ` ( ( A mod ( 2 ^ ( k + 1 ) ) ) x. B ) ) ) ) |
113 |
112
|
expcom |
|- ( k e. NN0 -> ( ph -> ( ( ( ( bits ` A ) i^i ( 0 ..^ k ) ) smul ( bits ` B ) ) = ( bits ` ( ( A mod ( 2 ^ k ) ) x. B ) ) -> ( ( ( bits ` A ) i^i ( 0 ..^ ( k + 1 ) ) ) smul ( bits ` B ) ) = ( bits ` ( ( A mod ( 2 ^ ( k + 1 ) ) ) x. B ) ) ) ) ) |
114 |
113
|
a2d |
|- ( k e. NN0 -> ( ( ph -> ( ( ( bits ` A ) i^i ( 0 ..^ k ) ) smul ( bits ` B ) ) = ( bits ` ( ( A mod ( 2 ^ k ) ) x. B ) ) ) -> ( ph -> ( ( ( bits ` A ) i^i ( 0 ..^ ( k + 1 ) ) ) smul ( bits ` B ) ) = ( bits ` ( ( A mod ( 2 ^ ( k + 1 ) ) ) x. B ) ) ) ) ) |
115 |
23 31 39 47 56 114
|
nn0ind |
|- ( N e. NN0 -> ( ph -> ( ( ( bits ` A ) i^i ( 0 ..^ N ) ) smul ( bits ` B ) ) = ( bits ` ( ( A mod ( 2 ^ N ) ) x. B ) ) ) ) |
116 |
3 115
|
mpcom |
|- ( ph -> ( ( ( bits ` A ) i^i ( 0 ..^ N ) ) smul ( bits ` B ) ) = ( bits ` ( ( A mod ( 2 ^ N ) ) x. B ) ) ) |