Metamath Proof Explorer


Theorem 0bits

Description: The bits of zero. (Contributed by Mario Carneiro, 6-Sep-2016)

Ref Expression
Assertion 0bits
|- ( bits ` 0 ) = (/)

Proof

Step Hyp Ref Expression
1 c0ex
 |-  0 e. _V
2 1 snid
 |-  0 e. { 0 }
3 fzo01
 |-  ( 0 ..^ 1 ) = { 0 }
4 2 3 eleqtrri
 |-  0 e. ( 0 ..^ 1 )
5 2cn
 |-  2 e. CC
6 exp0
 |-  ( 2 e. CC -> ( 2 ^ 0 ) = 1 )
7 5 6 ax-mp
 |-  ( 2 ^ 0 ) = 1
8 7 oveq2i
 |-  ( 0 ..^ ( 2 ^ 0 ) ) = ( 0 ..^ 1 )
9 4 8 eleqtrri
 |-  0 e. ( 0 ..^ ( 2 ^ 0 ) )
10 0z
 |-  0 e. ZZ
11 0nn0
 |-  0 e. NN0
12 bitsfzo
 |-  ( ( 0 e. ZZ /\ 0 e. NN0 ) -> ( 0 e. ( 0 ..^ ( 2 ^ 0 ) ) <-> ( bits ` 0 ) C_ ( 0 ..^ 0 ) ) )
13 10 11 12 mp2an
 |-  ( 0 e. ( 0 ..^ ( 2 ^ 0 ) ) <-> ( bits ` 0 ) C_ ( 0 ..^ 0 ) )
14 9 13 mpbi
 |-  ( bits ` 0 ) C_ ( 0 ..^ 0 )
15 fzo0
 |-  ( 0 ..^ 0 ) = (/)
16 14 15 sseqtri
 |-  ( bits ` 0 ) C_ (/)
17 0ss
 |-  (/) C_ ( bits ` 0 )
18 16 17 eqssi
 |-  ( bits ` 0 ) = (/)