Step |
Hyp |
Ref |
Expression |
1 |
|
c0ex |
|- 0 e. _V |
2 |
1
|
snid |
|- 0 e. { 0 } |
3 |
|
fzo01 |
|- ( 0 ..^ 1 ) = { 0 } |
4 |
2 3
|
eleqtrri |
|- 0 e. ( 0 ..^ 1 ) |
5 |
|
2cn |
|- 2 e. CC |
6 |
|
exp0 |
|- ( 2 e. CC -> ( 2 ^ 0 ) = 1 ) |
7 |
5 6
|
ax-mp |
|- ( 2 ^ 0 ) = 1 |
8 |
7
|
oveq2i |
|- ( 0 ..^ ( 2 ^ 0 ) ) = ( 0 ..^ 1 ) |
9 |
4 8
|
eleqtrri |
|- 0 e. ( 0 ..^ ( 2 ^ 0 ) ) |
10 |
|
0z |
|- 0 e. ZZ |
11 |
|
0nn0 |
|- 0 e. NN0 |
12 |
|
bitsfzo |
|- ( ( 0 e. ZZ /\ 0 e. NN0 ) -> ( 0 e. ( 0 ..^ ( 2 ^ 0 ) ) <-> ( bits ` 0 ) C_ ( 0 ..^ 0 ) ) ) |
13 |
10 11 12
|
mp2an |
|- ( 0 e. ( 0 ..^ ( 2 ^ 0 ) ) <-> ( bits ` 0 ) C_ ( 0 ..^ 0 ) ) |
14 |
9 13
|
mpbi |
|- ( bits ` 0 ) C_ ( 0 ..^ 0 ) |
15 |
|
fzo0 |
|- ( 0 ..^ 0 ) = (/) |
16 |
14 15
|
sseqtri |
|- ( bits ` 0 ) C_ (/) |
17 |
|
0ss |
|- (/) C_ ( bits ` 0 ) |
18 |
16 17
|
eqssi |
|- ( bits ` 0 ) = (/) |