Database
ELEMENTARY NUMBER THEORY
Elementary properties of divisibility
Bit sequences
0bits
Next ⟩
m1bits
Metamath Proof Explorer
Ascii
Unicode
Theorem
0bits
Description:
The bits of zero.
(Contributed by
Mario Carneiro
, 6-Sep-2016)
Ref
Expression
Assertion
0bits
⊢
bits
⁡
0
=
∅
Proof
Step
Hyp
Ref
Expression
1
c0ex
⊢
0
∈
V
2
1
snid
⊢
0
∈
0
3
fzo01
⊢
0
..^
1
=
0
4
2
3
eleqtrri
⊢
0
∈
0
..^
1
5
2cn
⊢
2
∈
ℂ
6
exp0
⊢
2
∈
ℂ
→
2
0
=
1
7
5
6
ax-mp
⊢
2
0
=
1
8
7
oveq2i
⊢
0
..^
2
0
=
0
..^
1
9
4
8
eleqtrri
⊢
0
∈
0
..^
2
0
10
0z
⊢
0
∈
ℤ
11
0nn0
⊢
0
∈
ℕ
0
12
bitsfzo
⊢
0
∈
ℤ
∧
0
∈
ℕ
0
→
0
∈
0
..^
2
0
↔
bits
⁡
0
⊆
0
..^
0
13
10
11
12
mp2an
⊢
0
∈
0
..^
2
0
↔
bits
⁡
0
⊆
0
..^
0
14
9
13
mpbi
⊢
bits
⁡
0
⊆
0
..^
0
15
fzo0
⊢
0
..^
0
=
∅
16
14
15
sseqtri
⊢
bits
⁡
0
⊆
∅
17
0ss
⊢
∅
⊆
bits
⁡
0
18
16
17
eqssi
⊢
bits
⁡
0
=
∅