Metamath Proof Explorer


Theorem 0bits

Description: The bits of zero. (Contributed by Mario Carneiro, 6-Sep-2016)

Ref Expression
Assertion 0bits bits 0 =

Proof

Step Hyp Ref Expression
1 c0ex 0 V
2 1 snid 0 0
3 fzo01 0 ..^ 1 = 0
4 2 3 eleqtrri 0 0 ..^ 1
5 2cn 2
6 exp0 2 2 0 = 1
7 5 6 ax-mp 2 0 = 1
8 7 oveq2i 0 ..^ 2 0 = 0 ..^ 1
9 4 8 eleqtrri 0 0 ..^ 2 0
10 0z 0
11 0nn0 0 0
12 bitsfzo 0 0 0 0 0 ..^ 2 0 bits 0 0 ..^ 0
13 10 11 12 mp2an 0 0 ..^ 2 0 bits 0 0 ..^ 0
14 9 13 mpbi bits 0 0 ..^ 0
15 fzo0 0 ..^ 0 =
16 14 15 sseqtri bits 0
17 0ss bits 0
18 16 17 eqssi bits 0 =