Step |
Hyp |
Ref |
Expression |
1 |
|
c0ex |
⊢ 0 ∈ V |
2 |
1
|
snid |
⊢ 0 ∈ { 0 } |
3 |
|
fzo01 |
⊢ ( 0 ..^ 1 ) = { 0 } |
4 |
2 3
|
eleqtrri |
⊢ 0 ∈ ( 0 ..^ 1 ) |
5 |
|
2cn |
⊢ 2 ∈ ℂ |
6 |
|
exp0 |
⊢ ( 2 ∈ ℂ → ( 2 ↑ 0 ) = 1 ) |
7 |
5 6
|
ax-mp |
⊢ ( 2 ↑ 0 ) = 1 |
8 |
7
|
oveq2i |
⊢ ( 0 ..^ ( 2 ↑ 0 ) ) = ( 0 ..^ 1 ) |
9 |
4 8
|
eleqtrri |
⊢ 0 ∈ ( 0 ..^ ( 2 ↑ 0 ) ) |
10 |
|
0z |
⊢ 0 ∈ ℤ |
11 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
12 |
|
bitsfzo |
⊢ ( ( 0 ∈ ℤ ∧ 0 ∈ ℕ0 ) → ( 0 ∈ ( 0 ..^ ( 2 ↑ 0 ) ) ↔ ( bits ‘ 0 ) ⊆ ( 0 ..^ 0 ) ) ) |
13 |
10 11 12
|
mp2an |
⊢ ( 0 ∈ ( 0 ..^ ( 2 ↑ 0 ) ) ↔ ( bits ‘ 0 ) ⊆ ( 0 ..^ 0 ) ) |
14 |
9 13
|
mpbi |
⊢ ( bits ‘ 0 ) ⊆ ( 0 ..^ 0 ) |
15 |
|
fzo0 |
⊢ ( 0 ..^ 0 ) = ∅ |
16 |
14 15
|
sseqtri |
⊢ ( bits ‘ 0 ) ⊆ ∅ |
17 |
|
0ss |
⊢ ∅ ⊆ ( bits ‘ 0 ) |
18 |
16 17
|
eqssi |
⊢ ( bits ‘ 0 ) = ∅ |