Metamath Proof Explorer


Theorem 0bits

Description: The bits of zero. (Contributed by Mario Carneiro, 6-Sep-2016)

Ref Expression
Assertion 0bits ( bits ‘ 0 ) = ∅

Proof

Step Hyp Ref Expression
1 c0ex 0 ∈ V
2 1 snid 0 ∈ { 0 }
3 fzo01 ( 0 ..^ 1 ) = { 0 }
4 2 3 eleqtrri 0 ∈ ( 0 ..^ 1 )
5 2cn 2 ∈ ℂ
6 exp0 ( 2 ∈ ℂ → ( 2 ↑ 0 ) = 1 )
7 5 6 ax-mp ( 2 ↑ 0 ) = 1
8 7 oveq2i ( 0 ..^ ( 2 ↑ 0 ) ) = ( 0 ..^ 1 )
9 4 8 eleqtrri 0 ∈ ( 0 ..^ ( 2 ↑ 0 ) )
10 0z 0 ∈ ℤ
11 0nn0 0 ∈ ℕ0
12 bitsfzo ( ( 0 ∈ ℤ ∧ 0 ∈ ℕ0 ) → ( 0 ∈ ( 0 ..^ ( 2 ↑ 0 ) ) ↔ ( bits ‘ 0 ) ⊆ ( 0 ..^ 0 ) ) )
13 10 11 12 mp2an ( 0 ∈ ( 0 ..^ ( 2 ↑ 0 ) ) ↔ ( bits ‘ 0 ) ⊆ ( 0 ..^ 0 ) )
14 9 13 mpbi ( bits ‘ 0 ) ⊆ ( 0 ..^ 0 )
15 fzo0 ( 0 ..^ 0 ) = ∅
16 14 15 sseqtri ( bits ‘ 0 ) ⊆ ∅
17 0ss ∅ ⊆ ( bits ‘ 0 )
18 16 17 eqssi ( bits ‘ 0 ) = ∅