Database
ELEMENTARY NUMBER THEORY
Elementary properties of divisibility
Bit sequences
m1bits
Next ⟩
bitsinv1lem
Metamath Proof Explorer
Ascii
Unicode
Theorem
m1bits
Description:
The bits of negative one.
(Contributed by
Mario Carneiro
, 5-Sep-2016)
Ref
Expression
Assertion
m1bits
⊢
bits
⁡
−
1
=
ℕ
0
Proof
Step
Hyp
Ref
Expression
1
0z
⊢
0
∈
ℤ
2
bitscmp
⊢
0
∈
ℤ
→
ℕ
0
∖
bits
⁡
0
=
bits
⁡
-
0
-
1
3
1
2
ax-mp
⊢
ℕ
0
∖
bits
⁡
0
=
bits
⁡
-
0
-
1
4
0bits
⊢
bits
⁡
0
=
∅
5
4
difeq2i
⊢
ℕ
0
∖
bits
⁡
0
=
ℕ
0
∖
∅
6
dif0
⊢
ℕ
0
∖
∅
=
ℕ
0
7
5
6
eqtri
⊢
ℕ
0
∖
bits
⁡
0
=
ℕ
0
8
neg0
⊢
−
0
=
0
9
8
oveq1i
⊢
-
0
-
1
=
0
−
1
10
df-neg
⊢
−
1
=
0
−
1
11
9
10
eqtr4i
⊢
-
0
-
1
=
−
1
12
11
fveq2i
⊢
bits
⁡
-
0
-
1
=
bits
⁡
−
1
13
3
7
12
3eqtr3ri
⊢
bits
⁡
−
1
=
ℕ
0